• Title/Summary/Keyword: Timing

Search Result 4,469, Processing Time 0.056 seconds

Speech Rhythm and the Three Aspects of Speech Timing: Articulatory, Acoustic and Auditory

  • Yun, Il-Sung
    • Speech Sciences
    • /
    • v.8 no.1
    • /
    • pp.67-76
    • /
    • 2001
  • This study is targeted at introducing the three aspects of speech timing (articulatory, acoustic and auditory) and discussing their strong and weak points in describing speech timing. Traditional (extrinsic) articulatory timing theories exclude timing representation in the speaker's articulatory plan for his utterance, while the (intrinsic) articulatory timing theories headed by Fowler incorporate time into the plan for an utterance. As compared with articulatory timing studies with crucial constraints in data collection, acoustic timing studies can deal with even several hours of speech relatively easily. This enables us to perform suprasegmental timing studies as well as segmental timing studies. On the other hand, perception of speech timing is related to psychology rather than physiology and physics. Therefore, auditory timing studies contribute to enhancing our understanding of speech timing from the psychological point of view. Traditionally, some theories of speech timing (e.g. typology of speech rhythm: stress-timing; syllable-timing or mora-timing) have been based on our perception. However, it is problematic that auditory timing can be subjective despite some validity. Many questions as to speech timing are expected to be answered more objectively. Acoustic and articulatory description of timing will be the method of solving such problems of auditory timing.

  • PDF

Test Case Generation Strategy for Timing Diagram (Timing diagram의 테스트 케이스 생성 전략)

  • Lee, Hong-Seok;Chung, Ki-Hyun;Choi, Kyung-Hee
    • The KIPS Transactions:PartD
    • /
    • v.17D no.4
    • /
    • pp.283-296
    • /
    • 2010
  • Timing diagram is a useful tool for describing the specification of system, but there is no study for test case strategy of a timing diagram. To solve this problem, we followed the steps to generate test cases from timing diagram in this paper. 1) We defined a timing diagram formally. 2) We describe the method of transforming from a timing diagram model into a Stateflow model which has an equivalent relationship between a timing diagram model and a transformed Stateflow model. 3) We generated test cases from a transformed Stateflow model using SDV which is plugged in Simulink. To show that our approach is useful, we made an experiment with a surveillance model and arbitrary timing diagram models. In the experiment we transformed timing diagram models into Stateflow models, generated test cases from transformed Stateflow models using SDV, and analyzed the generation results. The conclusion that can be obtained from this study is that timing diagram is not only a specification tool but also a useful tool when users are trying to generate test cases based on model.

A Novel Timing Control Method for Airborne SAR Motion Compensation (항공기 요동보상을 위한 SAR시스템의 타이밍 제어 기법)

  • Lee, Hyon-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.453-460
    • /
    • 2010
  • For high quality image acquisition, compensating air-vehicle motion is essential for airborne SAR system. This paper describes a timing control based motion compensation method for airborne SAR system. Efficient timing control is critical for SAR system since it maintains many timing signals and timing setting for the signals should be updated frequently. This paper proposes Timing Cluster method as an efficient means for timing control of SAR system. Moreover, this paper suggests a simple and efficient method to compensate air-vehicle motion based on the Timing Cluster method. Timing Cluster method enables SAR system to control the timing in a timing noncritical way just maintaining little amount of information.

A Review of Timing Factors in Speech

  • Yun, Il-Sung
    • Speech Sciences
    • /
    • v.7 no.3
    • /
    • pp.87-98
    • /
    • 2000
  • Timing in speech is determined by many factors. In this paper, we introduce and discuss some factors that have generally been regarded as important in speech timing. They include stress, syllable structure, consonant insertion or deletion, tempo, lengthening at clause, phrase and word boundaries, preconsonantal vowel shortening, and compensation between segments or within phonological units (e.g., word, foot), compression due to the increase of syllables in word or foot level, etc. and each of them may playa crucial role in the structuring of speech timing in a language. But some of these timing factors must interact with each other rather than be independent and the effects of each factor on speech timing will vary from language to language. On the other hand, there could well be many other factors unknown so far. Finding out and investigating new timing factors and reinterpreting the already-known timing factors should enhance our understanding of timing structures in a given language or languages.

  • PDF

On Effective Symbol Timing in High speed Data Modems (고속 Data Modem에서의 효과적인 Symbol Timing 방식에 관한 연구)

  • 장존세;은종관
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.37-42
    • /
    • 1984
  • In this paper, effective methods of symbol timing in a 9600 bps modem are presented. The symbol timing circuit consists of a square-low device followed by a high-Q narrow band-pass filter tuned to a symbol frequency. Also, the advantages of using a digital phase-tooted loop (DPLL) to suppress side tones are described, and statistical properties of timing wave are derived. In addition, the overall performances of the symbol timing circuit are verified by computer simulation.

  • PDF

Effects of the Intake Valve Timing and the Injection Timing for a Miller Cycle Engine

  • Han, Sung-Bin;Chang, Yong-Hoon;Choi, Gyeung-Ho;Chung, Yon-Jong;Poompipatpong, Chedthawut;Koetniyom, Saiprasit
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.32-38
    • /
    • 2010
  • The objective of the research was to study the effects a Miller cycle. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. Miller Cycle without supercharging can increase brake thermal efficiency 1.08% and reduce brake specific fuel consumption 4.58%. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency.

The timing do-skew modeling and design in a high speed digital system (고속 디지털 시스템에서 전달 시간차의 보정 모델링 및 구현)

  • Oh, Kwang-Suhk
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.601-604
    • /
    • 2002
  • In this paper, the timing do-skew modeling for a high speed logic tester channels is developed. The time delay of each channel in a logic tester are different from other channels and it can produce timing error in a test. To get the best timing accuracy in the test with a logic tester, the timing skew must be compensated. The timing skew of channels is due to the difference of time delay of pin-electronics devices composing channels and length of metal line placed on PCB. The expected timing difference of channels can be calculated according to the specifications of pin electronics devices and strip line modeling of PCB. With the calculated delay time, the timing skew compensation circuit has been designed. With the timing skew compensation circuit, the timing calibration of a logic tester can be peformed easily and automatically without other time measuring instruments. The calibration method can then be directly applied to logic testers in mass production lines.

  • PDF

Test Input Sequence Generation Strategy for Timing Diagram using Linear Programming (선형 계획법을 이용한 Timing Diagram의 테스트 입력 시퀀스 자동 생성 전략)

  • Lee, Hong-Seok;Chung, Ki-Hyun;Choi, Kyung-Hee
    • The KIPS Transactions:PartD
    • /
    • v.17D no.5
    • /
    • pp.337-346
    • /
    • 2010
  • Timing diagram is popularly utilized for the reason of its advantages; it is convenient for timing diagram to describe behavior of system and it is simple for described behaviors to recognize it. Various techniques are needed to test systems described in timing diagram. One of them is a technique to derive the system into a certain condition under which a test case is effective. This paper proposes a technique to automatically generate the test input sequence to reach the condition for systems described in timing diagram. It requires a proper input set which satisfy transition condition restricted by input waveform and timing constraints to generate a test input sequence automatically. To solve the problem, this paper chooses an approach utilizing the linear programming, and solving procedure is as follows: 1) Get a Timing diagram model as an input, and transforms the timing diagram model into a linear programming problem. 2) Solve the linear programming problem using a linear programming tool. 3) Generate test input sequences of a timing diagram model from the solution of linear programming problem. This paper addresses the formal method to drive the linear programming model from a given timing diagram, shows the feasibility of our approach by prove it, and demonstrates the usability of our paper by showing that our implemented tool solves an example of a timing diagram model.

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

  • Cho, Haeng-Muk;He, Bang-Quan
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • Natural gas is a promising alternative fuel of internal combustion engines. In this paper, the combustion and emission characteristics were investigated on a natural gas engine at two different fuel injection timings during the intake stroke. The results show that fuel injection timing affects combustion processes. The optimum spark timing (MBT) achieving the maximum indicated mean effective pressure (IMEP) is related to fuel injection timing and air fuel ratio. At MBT spark timing, late fuel injection timing delays ignition timing and prolongs combustion duration in most cases. But fuel injection timing has little effect on IMEP at fixed lambdas. The coefficient of variation (COV) of IMEP is dependent on air fuel ratio, throttle positions and fuel injection timings at MBT spark timing. The COV of IMEP increases with lambda in most cases. Late fuel injection timings can reduce the COV of IMEP at part loads. Moreover, engine-out CO and total hydrocarbon (THC) emissions can be reduced at late fuel injection timing.

Non-data Aided Timing Phase Recovery Scheme for Digital Equalization of Chromatic Dispersion and Polarization Mode Dispersion

  • Park, Jang-Woo;Chung, Won-Zoo;Park, Jong-Sun;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.367-372
    • /
    • 2009
  • In this paper we propose an electronic domain timing phase selection scheme for the optical communication systems suffering from inter-symbol-interference (ISI) distortion due to chromatic dispersion (CD) or polarization mode dispersion (PMD). In the presence of CD/PMD a proper timing phase selection is important for discrete time domain equalizers, since different timing phases produce different nonlinear ISI channels of different severity. The proposed timing phase recovery scheme based on dispersion minimization (DM) practically approximates the optimal minimum mean squared error (MMSE) timing phase without training signals which reduces overall throughput substantially, especially in time-varying channels such as PMD. The simulation results show that the proposed DM timing agrees with MMSE timing phase, under proper normalization of the received signals, for various dispersion and OSNR.