• 제목/요약/키워드: TimeSeries Data

검색결과 3,697건 처리시간 0.038초

GPR 기반 콘크리트 슬래브 시공 두께 검측 기법 개발 (Development of Thickness Measurement Method From Concrete Slab Using Ground Penetrating Radar)

  • 이태민;강민주;최민서;정선응;최하진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권3호
    • /
    • pp.39-47
    • /
    • 2022
  • 국내의 공동주택 보급률 증가에 따라 층간소음으로 인한 문제가 증가하고 있다. 이를 예방하기 위하여 바닥 충격음 차단 구조에 대한 수요가 높아지고 있으며 해당 구조에 대한 성능 인증이 이뤄지고 있지만 소음 차단 성능이 현장에서는 재현되지 않는다는 문제점이 있다. 해당 구조가 제 성능을 발휘하기 위해서는 일정 두께 이상의 마감 모르타르 타설이 필요하며, 해당 구조의 시공 적정성 판정을 위하여 GPR을 이용한 두께 측정 실험을 진행하였다. 본 연구에서 개발한 두께 측정 알고리즘은 측정된 데이터를 기반으로 상대유전율을 설정할 수 있어 정확한 두께 값을 측정할 수 있다. 네 종류의 바닥 충격음 차단 인증 구조에서 GPR 두께 측정 실험을 진행하였으며, GPR 데이터와 천공 측정 데이터 간 평균 오차는 1.95mm로 나타났다. 또한 마감재 유무가 측정값에 미치는 영향을 조사하기 위하여 총 3가지 종류의 마감재를 배치하고 실험을 진행으며, 평균 오차는 1.70mm로 나타났다. 추가적으로 장비의 샘플링 오차, 개발 알고리즘 변수, 천공 오차등을 종합적으로 고려하였을 때, GPR 계측 및 제안 알고리즘은 매우 높은 정확도로 슬래브 마감 모르타르의 두께 측정에 적용할 수 있음을 확인하였다.

부산 연안에서 태풍에 의한 폭풍해일의 수치모델링 (Numerical Modelling of Typhoon-Induced Storm Surge on the Coast of Busan)

  • 김차겸;강태순
    • 해양환경안전학회지
    • /
    • 제29권7호
    • /
    • pp.760-769
    • /
    • 2023
  • 태풍 매미 통과 시에 부산연안에서 폭풍해일고를 해석하기 위한 수치실험을 수행하였다. 태풍 매미는 2003년 9월 12일 21:00에 중심기압 950hPa로 우리나라 남해안에 상륙하였으며, 지난 수십년 간에 걸쳐 최악의 해안재해로 기록되었다. 태풍 매미 통과시 부산항, 여수항, 통영항, 마산항, 제주항 및 서귀포항에서 관측된 폭풍해일고와 계산된 해일고의 시계열을 비교하였으며, 계산결과와 관측결과는 잘 일치하였다. 태풍해일고는 마산항에서 약 230 cm로 가장 크게 나타났으며, 여수항과 통영항에서는 약 200 cm, 부산항에서는 약 75 cm로 나타났다. 폭풍해일 수치실험결과, 부산 동부 연안에서 해일고는 52~55 cm 범위이고, 외해로 갈수록 해일고는 감소하였다. 따라서 반폐쇄된 만에서는 해일고의 상승으로 인한 연안 침수범람 피해가 크게 발생할 것으로 사료되며, 본 수치실험결과는 태풍으로 인한 연안재해 저감을 위한 중요한 자료로 사용될 수 있다.

인공지능 기반 콩 생장분석 방법 연구 (A Study on the Artificial Intelligence-Based Soybean Growth Analysis Method)

  • 전문석;김영태;정유석;배효준;이채원;김송림;최인찬
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.1-14
    • /
    • 2023
  • 콩은 세계 5대 식량작물 중 하나로 식물성 단백질의 주요 공급원이다. 작물 특성상 기후변화에 따라 곡물 생산량에 큰 영향을 받기 때문에 국립농업과학원에서는 콩 품종별 생장 분석을 통해 작물표현형 연구를 진행중이다. 콩 품종별 생장 분석을 위한 생장 과정 사진 촬영은 자동화된 시스템으로 이루어지지만 생장 상태를 확인, 기록, 분석하는 과정은 수작업으로 진행되고 있다. 본 논문에서는 이러한 과정을 자동화 할 수 있도록 콩 작물의 영상 데이터에서 콩잎 객체를 검출하는 YOLOv5s 모델과 검출된 콩잎의 전개 여부를 판단하는 합성곱 신경망(Convolution Neural Network; CNN) 모델을 설계, 학습하였다. 두 모델을 결합하고 검출된 콩잎의 좌표데이터로 층을 구분하는 알고리즘을 구현하여 콩 작물의 시계열 데이터를 입력하여 생장을 분석하는 프로그램을 개발하였고, 그 결과 콩 작물의 제2~3복엽까지 생장 시기를 판단할 수 있었다.

한국 지방자치단체의 주민참여예산제도 운영에 관한 연구 - Support Vector Machine 기법을 이용한 유형 구분 (A Study on Korean Local Governments' Operation of Participatory Budgeting System : Classification by Support Vector Machine Technique)

  • 한준현;유재민;배재연;임충혁
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.461-466
    • /
    • 2024
  • 한국의 주민참여예산제도는 자치단체별로 자율적으로 운영되도록 하고 있어서, 본 연구는 이들을 몇 개의 유사한 유형들로 구분하여서 각각의 특징들을 살펴보고자 한다. 본 연구는 다양한 머신 러닝 기법들을 활용하여 2022년도 기초 시(市)를 중심으로 운영유형을 분류하였다. 그 결과, 여러 머신 러닝 기법(Neural Network, Rule Induction(CN2), KNN, Decision Tree, Random Forest, Gradient Boosting, SVM, Naïve Bayes) 중에서 SVM 기법이 성능이 가장 좋은 것으로 확인되었다. SVM 기법이 밝혀낸 운영유형은 모두 3개인데, 하나는 위원회 활동은 적게 하지만, 참여예산은 많이 확보하는 클러스터(C1)이고, 다른 하나는 주민참여예산제에 매우 소극적인 도시들의 클러스터(C3)이다. 마지막 클러스터(C2)는 참여예산에 전반적으로 적극적인데, 대다수 지역이 여기에 해당한다. 결론적으로 한국의 대다수 자치단체는 주민참여예산제를 긍정적으로 운영하고 있으며, 오직 소수의 자치단체만 소극적이다. 후속 연구로 지난 10여 년간의 시계열 자료를 분석한다면, 우리는 주민참여예산에 관한 지방자치단체 유형 분류의 신뢰도를 더욱 높일 수 있을 것으로 기대한다.

시계열 분석 및 딥러닝 모형을 활용한 월 강수량 예측 비교 (Comparing Monthly Precipitation Predictions Using Time Series Analysis with Deep Learning Models)

  • 정연지;김민기;엄명진
    • 대한토목학회논문집
    • /
    • 제44권4호
    • /
    • pp.443-463
    • /
    • 2024
  • 본 연구는 지역별로 과거 30년간의 월 강수량 데이터를 활용하여 강수량 예측의 정확성을 높이고자 하였다. 통계적 모형(ARIMA, SARIMA)과 딥러닝 모형(LSTM, GBM)을 사용하여 강릉, 광주, 대구, 대전, 부산, 서울, 제주 그리고 춘천 지역에서 1983년부터 2012년까지의 월 강수량 데이터를 학습하고 이를 바탕으로 2013년부터 2022년까지 10년간 월 강수량을 예측하였다. 예측 결과, 대부분 모형에서 강수량의 추세는 정확하게 예측했으나, 실제 강수량보다 과소 예측하는 경향을 보였다. 이러한 문제점을 해결하고자 지역별, 계절별 적합한 모델을 선정하였다. 강릉, 광주, 대구, 대전, 부산, 서울, 제주 그리고 춘천에는 LSTM 모형이 적합한 결과를 보였다. 계절별로 나누어 예측력을 비교하면, SARIMA 모형은 강릉, 광주, 대구, 대전, 서울 그리고 춘천 지역에서 겨울철에 특히 적합한 예측 성능을 나타냈다. 또한, LSTM 모형은 강수가 집중된 여름철에 다른 모형에 비해 높은 성능을 보였다. 결론적으로, 지역별 및 계절별 강수 패턴을 면밀하게 분석하고 이에 기반한 적합한 예측 모형을 선택하는 것은 강수량 예측의 정확도를 높이는 데 결정적인 역할을 한다.

한국 인터넷사이트들의 산업별 경쟁유형에 대한 탐색적 연구 (An Exploratory Study on the Competition Patterns Between Internet Sites in Korea)

  • 박윤서;김용식
    • Asia Marketing Journal
    • /
    • 제12권4호
    • /
    • pp.79-111
    • /
    • 2011
  • 정보통신기술의 발달로 인해 도래한 디지털 경제는 인터넷 비즈니스라는 새로운 사업영역을 창출하였다. 인터넷 비즈니스는 다른 사업과 달리 매우 유동적인 시장점유율 변동이 나타나는 비즈니스 영역으로, 기업들은 시장 내의 경쟁 환경 및 경쟁 구조를 정확히 이해하여야만 불안정한 인터넷 시장 환경에 효과적으로 대처해 나갈 수 있게 되었다. 이에, 본 연구는 한국 인터넷 비즈니스내의 인터넷 사이트 간 경쟁을 각 사업 분야 별 시장점유율에 기초하여 실증분석 하였다. 이를 통해 인터넷 사이트들의 점유율 변동 추이를 살펴보고, 시장 선도 사이트들의 시장 지배력과 개별 시장의 경쟁 구도 등을 살펴보았다. 이러한 연구결과는 각 기업의 인터넷 사이트 담당자에게는 해당 시장의 경쟁양상과 경쟁구조를 파악할 수 있는 기회를 제공하고, 인터넷 분야로 새롭게 진출하려는 기업의 마케터들에게는 자사의 사업 진출 방향에 대한 기초자료로 활용될 수 있을 것이다.

  • PDF

다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형 (The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM)

  • 박지영;홍태호
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.

드론을 활용한 지표온도와 흡수일사 간 공간적 상관관계 분석 - 쿨루프 효과 분석을 중심으로 - (Analysis of Spatial Correlation between Surface Temperature and Absorbed Solar Radiation Using Drone - Focusing on Cool Roof Performance -)

  • 조영일;윤동현;이명진
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1607-1622
    • /
    • 2022
  • 본 연구의 목적은 도시폭염 저감을 위한 기법인 쿨루프를 연구지역에 적용하여 토지피복 객체 간 지표 온도와 흡수일사 간 공간적 상관관계 분석으로 실질적 효과 파악을 목적으로 한다. 이를 위해 실제 쿨루프가 적용된 경상남도 김해시 장유무계동 인근을 연구지역으로 선정하였으며, 드론 DJI Matrice 300 RTK에 열적외 영역센서 FLIR Vue Pro R, 가시광선 영역센서 H20T와 다중분광영역 센서인 Micasense Red-Edge를 활용하여 계측하였다. 계측 일정은 2021년 7월 27일 아침 7시 15분부터 약 1시간 30분 간격으로 총 9장의 열지도와 동일 시간대의 흡수일사 분포도, 쿨루프(113개) 및 일반옥상(367개) 지붕 객체를 추출하였다. 흡수일사 분포도는 ArcGIS의 3D 분석 기능인 Solar Radiation Analysis Tool을 통해 산출한 전천일사 분포도에 Micasense Red Edge를 통해 촬영한 Blue, Green Red, Near Infrared, Red Edge Range 영역대 센서의 조합을 통해 구축한 연구 지역의 알베도 값을 반영하여 구축한다. 전술된 자료를 기반으로 일반옥상과 쿨루프 지붕 객체별 지표온도와 흡수일사 간 Pearson 상관계수를 산출하였다. 분석 결과 일 평균 기준 일반옥상 0.550, 쿨루프 0.387의 상관계수 값을 나타내고 있었다. 하지만, 시간대별 상관성의 변화를 파악한 결과 분석일 기준 태양고도가 높은 시기인 11시 30분과 13시의 경우 일반옥상과 쿨루프 간 상관계수의 차이는 0.022, 0.024 값을 보여 유사한 상관성을 보이고 있다. 그 외 시간대는 일반옥상의 상관계수 값이 쿨루프 보다 약 0.1 이상 높은 값을 보이고 있다. 본 연구는 드론을 통해 취득한 고해상도 영상을 활용하여 쿨루프의 실질적 일사차단 영향의 가능성을 대조군이 되는 일반 옥상과의 상관성 비교를 통해 파악한 사례 연구이다. 향후 본 연구 결과를 기반으로 효율적인 도시열섬 저감기법 적용이 가능할 것으로 사료된다.

국가별 기술경쟁력이 유니콘기업 증가에 미치는 영향에 관한 연구 (The Effects of Technological Competitiveness by Country on The Increase of Unicorn Companies)

  • 조규훈;양동우
    • 벤처창업연구
    • /
    • 제19권1호
    • /
    • pp.55-73
    • /
    • 2024
  • 유니콘기업은 혁신적인 비즈니스 모델로 단기간 내 높은 기업가치를 인정받으며 전 세계적으로 주목을 받고 있다. 이들의 성장 과정은 스타트업 생태계에 좋은 교훈을 제시해주고 있고 국가 경제발전과 고용 창출 측면에서도 긍정적인 영향을 미치고 있다. 그러나 유니콘기업과 관련한 선행연구들은 이미 유니콘으로 인정받은 기업의 창업자 특성, 환경요인, 비즈니스 모델, 성공·실패 사례 등 다면적 접근보다는 '이벤트 스터디', '사례연구' 중심으로 이루어지고 있고 유니콘기업 발생과 관련한 요인에 대한 거시적 분석은 부족한 실정이다. 이러한 배경에서 본 연구는 선행연구를 통해 살펴본 유니콘의 특성 및 기술기업 비중이 높은 유니콘기업의 현황을 고려하여 '기술인적자원 지표', 'R&D 지표', '기술 인프라 지표' 등 국가의 기술경쟁력이 유니콘기업 증가에 미치는 영향을 분석하는 것을 목적으로 하였다. 통계분석을 위해 2017년부터 2020년까지 다양한 국제기구, 통계청에서 발표되는 자료와 CB Insights에서 집계한 유니콘기업 데이터를 44개 분석 대상 국가의 패널데이터로 활용하여 다중 회귀분석으로 검정하였다. 연구 결과 기술 인적자원 지표의 경우 과학 전공자 수가 유니콘기업 증가에 정(+)의 영향을 미치는 것으로 확인되었고 R&D 지표의 경우 R&D 투자총액은 유니콘기업 증가에 정(+)의 영향을 미치는 반면, 삼극 특허 건수(Triad Patent Families), 과학기술논문 발표 수는 유니콘기업 증가에 부(-)의 영향을 미치는 것으로 나타났다. 마지막으로 기술인프라 지표의 경우 세계 랭킹 500위 대학 수가 유니콘기업 증가에 정(+)의 영향을 미치는 것으로 확인되었다. 본 연구는 선행연구에서 미비하게 다루었던 국가별, 시계열 실증 데이터를 기반으로 국가 기술경쟁력과 유니콘기업 증가 간에 인과관계를 처음으로 밝혔다는 데 학술적 의미가 있으며 UN의 글로벌 산업경쟁력 지수 순위, OECD의 국가별 R&D 투자총액 비교 시 우리나라는 기술력, 성장잠재력이 있는 것으로 평가받고 있는 반면에 혁신경제의 리더로 성장을 견인하고 있는 유니콘기업 수는 상대적으로 적은 상황에 있어 향후 유니콘기업의 발굴, 육성을 위한 정책 수립 시 연구 결과를 활용할 수 있다는 실무적 의의를 가진다.

  • PDF

플럭스 관측 기반의 생태계 생산성과 효율성 평가: 해남 농경지 연구 사례 (Assessment of Ecosystem Productivity and Efficiency using Flux Measurement over Haenam Farmland Site in Korea (HFK))

  • 요하나 마리아 인드라와티;김준;강민석
    • 한국농림기상학회지
    • /
    • 제20권1호
    • /
    • pp.57-72
    • /
    • 2018
  • 기후스마트농업(Climate-Smart Agriculture, CSA)이 성취되고 있는지에 대한 정량적인 평가방법을 구축하기 위해 타워 기반의 플럭스 관측 시계열 자료를 활용할 수 있다. 이 연구에서는 벼농사가 지배적인 전형적인 비균질 농경지를 대상으로 CSA의 첫 번째 목표와 관련된 생산성과 효율성 평가를 시도하였다. 이를 위해 해남 농경지에 위치한 KoFlux 사이트(HFK)에서 2003년부터 2015년까지 벼의 생장기간 동안에 관측된 탄소, 물 및 에너지 플럭스의 시계열 자료를 분석하여 일련의 정량적인 지표들을 평가하였다. 이 연구기간 동안에 HFK에서는 네 가지의 다른 품종(동진 1호; 2003-2008, 남평; 2009, 온누리; 2010-2011, 새누리; 2012-2015)의 벼가 경작되었다. 전반적으로 품종을 구분하지 않을 경우, 연구기간 동안의 HFK의 총일차생산(GPP)은 800 - 944 g C m-2, 물사용효율(WUE)은 1.91 - 2.80 g C kg H2O-1, 탄소사용효율(CUE)은 1.06 - 1.34, 그리고 광사용효율(LUE)은 0.99 - 1.55 g C MJ-1이었다. 벼 이외의 다른 식생이 포함된 HFK의 비균질성을 고려하여 어림 잡아 비교해 보면, 네 품종 중에서 동진1호를 재배했을 때에 HFK의 생산성이 아시아의 단일 벼논의 생산성과 비슷했고 WUE도 높았던 반면에 CUE는 상대적으로 낮았다. 또한, 새누리를 재배했을 때에도 HFK가 비슷하게 높은 생산성을 보였으나 동진1호보다 생장기간이 상대적으로 길었다. 따라서 동진1호가 지배적인 HFK가 CSA의 관점에서 더 좋은 특성을 보여 준다. 그러나 현실적으로는 농부들이 해충 저항성이 동진1호보다 높은 새 누리를 재배하고 있다. 이는 CSA의 나머지 두 목표의 하나인 탄력(resilience) 향상을 통한 적응력 강화와 관련된 것으로 온실가스 방출 저감을 포함한 총체적인 평가가 이루어져야 함을 시사하며, 이에 대한 평가와 분석이 현재 진행 중에 있다.