• Title/Summary/Keyword: Time-varying Channels

Search Result 136, Processing Time 0.022 seconds

A new structure and algorithm for adaptive MMSE receivers in fading environments (페이딩 환경에서의 적응형 MMSE 수신기를 위한 새로운 구조 및 알고리듬)

  • 김성락;정영균;이정구;최인경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1667-1676
    • /
    • 1998
  • It is known that adaptive minimum mean square error (MMSE) receivers exhibit better performance than coventional single-user code division multiple access (CDMA) receivers in fixed (or static) channels and have the simple structure compared to other multi-user CDMA receivers. In practice, the radio channels are fading channels where the amplitude and phase of the received signal are time-varying and the sufficient signal-to-noise ratio is not always guaranteed. Thus, the performance of adaptive MMSE receivers is severely degraded in fading environments. We propose a new structure and adaptation algorithm for an adaptive MMSE receivers. Based on computer simulation results, it is observed that the proposed receiver demonstrates substantial performance improvement over currently available adaptive MMSE receivers in fading environments.

  • PDF

Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels (시변 채널에서 Bit-Interleaved Coded OFDM을 위한 적응 변조 기법)

  • Choi, Jin-Soo;Sung, Chang-Kyung;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.32-39
    • /
    • 2009
  • When adapting the transmitter to the channel state information(CSI), improved transmission is possible compared to the open loop system where no CSI is provided at the transmitter. However, since the perfect channel information is rarely available at the transmitter, the system design based on the partial CSI becomes an important factor. Especially, in mobile environments, the consideration for the outdated CSI should be applied for mitigating the performance degradation. In this paper, we propose a robust adaptive modulation and coding scheme for bit-interleaved coded orthogonal frequency division multiplexing over time-varying channels. With reasonable feedback overhead, the proposed scheme shows the enhanced performance by compensating for the outdated CSI due to Doppler spread. Simulation results confirm that the performance gain is achieved by applying an accurate BER estimation method.

Coordinated Beamforming Systems with Channel Prediction in Time-varying MIMO Broadcast Channel (시변 다중입출력 방송 채널을 위한 채널예측이 적용된 협력 빔형성 시스템)

  • Kim, Jin;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.302-308
    • /
    • 2011
  • In this paper we propose a coordinated beamforming(CBF) scheme considering the effects of feedback quantization and delay in time-varying multiple-input multiple-output(MIMO) broadcast channels. By equal power allocation per data stream, the proposed CBF scheme transmits multiple data streams per user terminals without additional feedback overhead when quantized feedback information is used. The proposed CBF scheme also applies a linear channel predictor to each user terminals to prevent errors due to feedback delays that are not evitable in practical wireless systems. Each user terminal utilizes Wiener filter to predict future channel responses and generates feedback information based on the predicted channels. Consequently the proposed CBF scheme adapting Wiener filter improves system performances compared with the conventional scheme using delayed feedback.

Equalizer Mode Selection Method for Improving Bit Error Performance of Underwater Acoustic Communication Systems (수중음향통신 시스템의 비트 오류 성능 향상을 위한 등화 모드 선택 방법)

  • Kim, Hyeon-Su;Seo, Jong-Pil;Kim, Jae-Young;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • The linear and decision-feedback equalization can mitigate time-varying intersymbol interference (ISI) caused by time-varying multipath propagation for underwater acoustic channels. The perfect elimination of interference components, however, is difficult using the linear equalization and the decision feedback equalizer has an error propagation problem. To overcome these shortcomings, this paper proposes an equalizer mode selection method using training sequences. The proposed method selects an equalization mode corresponding to the signal-to-noise ratio (SNR). If the SNR is low, the proposed system operates the linear equalizer for preventing the error propagation and if the SNR is high, the decision feedback equalizer for eliminating the residual ISI. Therefore, the proposed method can improve the error performance compared to the conventional equalizers. The computer simulation shows the proposed method improves the bit error performance using practical underwater channels responses acquired from the sea experiment.

Doppler Frequency Estimation for Time-Varying Underwater Acoustic Communication Channel (시변 수중음향통신 채널을 위한 도플러 주파수 추정)

  • Hwang, Chan-Ho;Kim, Ki-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.187-192
    • /
    • 2015
  • Underwater acoustic communication channels have very complex channel characteristics caused by time-varying sea surface, submarine topography, sound speed, and geometry between transmitter and receiver. Especially, the channel has time-variance and doppler effect due to wind and sea current. We have to recognize the channel state and apply it to communication technique for increasing transmission efficiency in the underwater acoustic channel. In this paper, we present the frame recursive modulation and demodulation method using ambiguity function and autocorrelation function to estimate the doppler frequency. Furthermore, we conducted the simulation and sea experiment to evaluate the performance of the proposed method. When the channel coding technique was not used, the bit error rate performance of the proposed method was improved about 32 % compared with conventional method.

A Novel Enhanced Decision-Directed Channel Estimation Scheme in High-Speed Mobile Environments (고속 이동 전파환경에서 결정지향 채널 추정 기법의 개선)

  • Ren, Yongzhe;Park, Dong Chan;Kim, Suk Chan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.29-32
    • /
    • 2015
  • It has been a big trend of the convergence technologies about communication systems and vehicular industry to improve safety and convenience. To achieve a number of infotainment vehicular applications, vehicles should transmit information with high reliability. A robust and accurate channel estimation scheme is of great importance to achieve the goal. In this paper, we present a novel enhanced decision-directed channel estimation scheme called FADP (Frequency Averaging Data Pilot) for dynamic time-varying vehicular channels in IEEE 802.11p. We use linear averaging filtering in frequency domain, and utilize the correlation characteristic of the channels between the adjacent two data symbols, update the CR in time domain to get more accuracy. Finally, analysis and simulation results reveal that compared with exist schemes, the proposed scheme has a good performance in mean square error (MSE) and bit error rate (BER).

A Channel Estimation for COFDM Systems in Time-Varying Multipath Fading Channels (시변 다중경로 페이딩 채널에서 COFDM 시스템의 채널 추정)

  • 문재경;박순용;김민택;채종석;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.618-633
    • /
    • 2000
  • In this paper, a Gaussian interpolation filter and cubic interpolation filter are presented to do more accurate channel estimation compared to the conventional linear interpolation filter for COFDM systems. In addition to an interpolation filter, a low pass filter using FFT and IFFT is also presented to reduce the noisy components of a channel estimate obtained by an interpolation filter. Channel estimates after low-pass filtering combined with interpolation filters can lower the error floor compared to the use of only interpolation filters. Computer simulation demonstrates that the presented channel estimation methods exhibit an improved performance compared to the conventional linear interpolation filter for COFDM systems in time-varying multipath fading channel and0.1 ~ 0.2 dB of Eb/No difference at BER=10-4 when the perfect channel estimation is compared.

  • PDF

Low-Power Channel-Adaptive Reconfigurable 4×4 QRM-MLD MIMO Detector

  • Kurniawan, Iput Heri;Yoon, Ji-Hwan;Kim, Jong-Kook;Park, Jongsun
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.100-111
    • /
    • 2016
  • This paper presents a low-complexity channel-adaptive reconfigurable $4{\times}4$ QR-decomposition and M-algorithm-based maximum likelihood detection (QRM-MLD) multiple-input and multiple-output (MIMO) detector. Two novel design approaches for low-power QRM-MLD hardware are proposed in this work. First, an approximate survivor metric (ASM) generation technique is presented to achieve considerable computational complexity reduction with minor BER degradation. A reconfigurable QRM-MLD MIMO detector (where the M-value represents the number of survival branches in a stage) for dynamically adapting to time-varying channels is also proposed in this work. The proposed reconfigurable QRM-MLD MIMO detector is implemented using a Samsung 65 nm CMOS process. The experimental results show that our ASM-based QRM-MLD MIMO detector shows a maximum throughput of 288 Mbps with a normalized power efficiency of 10.18 Mbps/mW in the case of $4{\times}4$ MIMO with 64-QAM. Under time-varying channel conditions, the proposed reconfigurable MIMO detector also achieves average power savings of up to 35% while maintaining a required BER performance.

Robust Video Transmission System Employing Byte-Aligned Variable-Length Turbo Codes and Its Code-Rate Adaptation over Mobile Communication Channels (이동통신 환경에서 바이트 정렬 가변 길이 터보 코드의 적응 부호화율 적용을 통한 동영상 전송 시스템)

  • 이창우;김종원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.921-930
    • /
    • 2004
  • In this paper, a robust video transmission system is proposed. To effectively prevent the corruption of video stream and its propagation in spatial and temporal domains, a version of turbo code, so-called as byte-aligned variable-length turbo code, is applied. Protection performance of the proposed turbo code is first evaluated by applying it to GOB-based variable-size ITU-T H.263+ video packets, where the protection level is statically controlled based on the joint source-channel criteria. This protection is then extended to support the adaptation of code ratio to best match the time-varying channel condition. The time-varying Rayleigh fading channel is modelled considering the correlation of the fading channel. The resulting performance comparison with the static turbo code as well as the conventional RCPC code clearly demonstrates the possibility of the proposed adaptation approach for the time-varying correlated Rayleigh-fading channel.

The Effects of Time Domain Windowing and Detection Ordering on Successive Interference Cancellation in OFDM Systems over Doubly Selective Channels (이중 선택적 채널 OFDM 시스템에서 시간 영역 윈도우와 검출 순서가 순차적 간섭 제거에 미치는 영향)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.635-641
    • /
    • 2010
  • Time-varying channel characteristics in OFDM systems over doubly selective channels cause inter-carrier interferences(ICI) in the frequency domain. Time domain windowing gives rise to restriction on the bandwidth of the frequency domain channel matrix and makes it possible to approximate the OFDM system as a simplified linear input-output model. When successive interference cancellation based on linear MMSE estimation is employed for channel equalization in OFDM systems, symbol detection ordering produces considerable effects on overall system performances. In this paper, we show the reduction of the residual ICI by time domain windowing and the resultant performance improvements, and investigate the effects of SINR- and CSEP-based symbol detection ordering on the performance of successive interference cancellation.