• Title/Summary/Keyword: Time-temperature

Search Result 18,444, Processing Time 0.052 seconds

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF

Analytical Studies on Yield and Yield Components in Barley (대맥의 수량 및 수량구성요소에 관한 해석적 연구)

  • Chung-Yun Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.88-123
    • /
    • 1975
  • To obtain useful fundamental informations for improving cultural practices of barley, an investigation was made on the influences of different fertilizer level and seeding rate as well as seeding date on yield and yield components and their balancing procedure using barley variety Suwon # 18, and at the same time, 8 varieties including Suwon # 18 were also tested to clarify the varietal responses in terms of their yield and yield components under different seeding date at Crop Experiment Station, Suwon, during the period of 1969 and 1970. The results obtained were summarized as follows; 1. Days to emergence of barley variety Suwon # 18 at Suwon, took 8 to 19 days in accordance with given different seeding date (from Sept. 21 to Oct. 31). Earlier emergence was observed by early seeding and most of the seeds were emerged at 15$0^{\circ}C$ cumulated soil temperature at 5cm depth from surface under the favorable condition. 2. Degree of cold injury in different seeding date was seemed to be affected by the growth rate of seedlings and climatic condition during the wintering period. Over growth and number of leaves less than 5 to 6 on the main stem before wintering were brought in severe cold damage during the wintering period. 3. Even though the number of leaves on the main stem were variable from 11 to 16 depending upon the seeding date. this differences were occurred before wintering and less variation was observed after wintering. Particularly, differences of the number of main stem leaves from September 21 to October 11 seeding date were occurred due to the differences of number of main stem leaves before wintering. 4. Dry matter accumulation before wintering was high in early seeded plot and gradually decreased in accordance with delayed seeding date and less different in dry matter weight was observed after wintering. However, the increment rate of this dry matter was high from regrowth to heading time and became low during the ripening period. 5. Number of tillers per $\m^2$ was higher in early seeding than late one and dense planting was higher in the number of tillers than sparse planting. Number of tillers per plant was lower in number and variation in dense planting, and reverse tendency was observed in sparse planting. By increasing seedling rate in early seeding date the number of tiller per plant was remarkably decreased, but the seeding rate didn't affect the individual tillering capacity in the late seeding date. 6. Seedlings were from early planting reached maximum tillering stage earlier than those from the late planting and no remarkable changes was observed due to increased seeding rate. However. increased seeding rate tends to make it earlier the maximum tillering stage early. 7. Stage of maximum tillering was coincided with stage of 4-5 main stem leaves regardless the seeding date. 8. Number of heads per $\m^2$ was increased with increased seeding rate but considerable year variation in number of heads was observed by increased fertilizer level. Therefore, it was clear that there is no difficulties in increasing number of heads per $\m^2$ through increasing both fertilizer level and seeding rate. This type of tendency was more remarkable at optimum seeding time. In the other hand, seeding at optimum time is more important than increasing seeding rate, but increasing seeding rate was more effective in late seeding for obtaining desirable number of heads per $\m^2$. 9. Number of heads per $\m^2$ was decreased generally in all varieties tested in late seeding, but the degree of decrease by late seeding was lower in Suwon # 18. Yuegi, Hangmi and Buheung compared with Suwon # 4, Suwon # 6, Chilbo and Yungwolyukak. 10. Highly significant positive correlations were obtained between number of head and tillers per $\m^2$ from heading date in September 21 seeding, from before-wintering in October 1 seeding and in all growth period from October 11 to October 31 seeding. However, relatively low correlation coefficient was estimated between number of heads and tillers counted around late March to early April in any seeding date. 11. Valid tiller ratio varied from 33% to 76% and highest yield was obtained when valid tiller ratio was about 50%. Therefore, variation of valid tiller ratio was greater due to seeding date differences than due to seeding rate. Early seeding decreased the valid tiller ratio and gradually increased by delaying seeding date but decreased by increasing seeding rate. Among the varieties tested Suwon # 18, Hangmi, Yuegi as well as Buheung should be high valid tiller ratio not only in late seeding but also in early seeding. In contrast to this phenomena, Chilbo, Suwon # 4, Suwon # 6 and Yungwolyukak expressed low valid tiller ratio in general, and also exhibited the same tendency in late seeding date. 12. Number of grains per spike was increased by increasing fertilizer level and decreased by increasing seeding rate. Among the seeding date tested. October 21 (1969) and October 11 (1970) showed lowest number of grains per spike which was increased in both early seeding and late seeding date. There were no definite tendencies observed along with seeding date differences in respective varieties tested. 13. Variation of 1000 grain weight due to fertilizer level applied, seeding date and seeding rate was not so high as number of grains per spike and number of heads per $\m^2$, but exhibited high year variation. Increased seeding rate decreased the 1000 grain weight. Among the varieties tested Chilbo and Buheung expressed heavy grain weight, while Suwon # 18, Hangmi and Yuegi showed comparatively light grain weight. 14. Optimum seeding date in Suwon area was around October 1 to October 11. Yield was generally increased by increasing fertilizer level. Yield decrease due to early seeding was compensated in certain extent by increased fertilizer application. 15. Yield variations due to seeding rate differences were almost negligible compare to the variations due to fertilizer level and seeding date. In either early seeding or law fertilizer level yield variation due to seeding rate was not so remarkable. Increment of fertilizer application was more effective for yield increase especially at increased seeding rate. And also increased seeding rate fairly compensated the decrease of yield in late seeding date. 16. Optimum seeding rate was considered to be around 18-26 liters per 10a at N-P-K=10.5-6-6 kg/10a fertilizer level considering yield stabilization. 17. Varietal differences in optimum seeding date was quite remarkable Suwon # 6, Suwon # 4. Buheung noted high yield at early seeding and Suwon # 18, Yuegi and Hangmi yielded higher in seeding date of October 10. However, Buheung showed late seeding adaptability. 18. Highly significant positive correlations were observed between yield and yield components in all treatments. However, this correlation coefficient was increased positively by increased fertilizer level and decreased by increased seeding rate. Significant negative correlation coefficients were estimated between yield and number of grains per spike, since increased number of heads per m2 at the same level of fertilizer tends to decrease the number of grains per spike. Comparatively low correlation coefficients were estimated between 1000 grain weight and yield. 19. No significant relations in terms of correlation coefficients was observed between number of heads per $\m^2$ and 1000 grain weight or number of grains per head.

  • PDF

Studies on Neck Blast Infection of Rice Plant (벼 이삭목도열병(病)의 감염(感染)에 관(關)한 연구(硏究))

  • Kim, Hong Gi;Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.206-241
    • /
    • 1985
  • Attempts to search infection period, infection speed in the tissue of neck blast of rice plant, location of inoculum source and effects of several conditions about the leaf sheath of rice plants for neck blast incidence have been made. 1. The most infectious period for neck blast incidence was the booting stage just before heading date, and most of necks have been infected during the booting stage and on heading date. But $Indica{\times}Japonica$ hybrid varieties had shown always high possibility for infection after booting stage. 2. Incubation period for neck blast of rice plants under natural conditions had rather a long period ranging from 10 to 22 days. Under artificial inoculation condition incubation period in the young panicle was shorter than in the old panicle. Panicles that emerged from the sheath of flag leaf had long incubation period, with a low infection rate and they also shown slow infection speed in the tissue. 3. Considering the incubation period of neck blast of rice plant, we assumed that the most effective application periods of chemicals are 5-10 days for immediate effective chemicals and 10-15 days for slow effective chemicals before heading. 4. Infiltration of conidia into the leaf sheath of rice plant carried out by saturation effect with water through the suture of the upper three leaves. The number of conidia observed in the leaf sheath during the booting stage were higher than those in the leaf sheath during other stages. Ligule had protected to infiltrate of conidia into the leaf sheath. 5. When conidia were infiltrated into the leaf sheath, the highest number of attached conidia was observed on the panicle base and panicle axis with hairs and degenerated panicle, which seemed to promote the infection of neck blast. 6. The lowest spore concentration for neck blast incidence was variable with rice varietal groups. $Indica{\times}Japonica$ hybrid varieties were infected easily compared to the Japonica type varieties, especially. The number of spores for neck blast incidence in $Indica{\times}Japonica$ hybrid varieties was less than 100 and disease index was higher also in $Indica{\times}Japonica$ hybrid than in Japonica type varieties. 7. Nitrogen content and silicate content were related with blast incidence in necks of rice plants in the different growing stage changed during growing period. Nitrogen content increased from booting stage to heading date and then decreased gradually as time passes. Silicate content increased from booting stage after heading with time. Change of these content promoted to increase neck blast infection. 8. Conidia moved to rice plant by ascending and desending dispersal and then attached on the rice plant. Conidia transfered horizontally was found very negligible. So we presumed that infection rate of neck blast was very low after emergence of panicle base from the leaf sheath. Also ascending air current by temperature difference between upper and lower side of rice plant seemed to increase the liberation of spores. 9. Conidial number of the blast fungus collected just before and after heading date was closely related with neck blast incidence. Lesions on three leaves from the top were closely related with neck blast incidence, because they had high potential for conidia formation of rice blast fungus and they were direct inoculum sources for neck blast. 10. The condition inside the leaf sheath was very favorable for the incidence of neck blast and the neck blast incidence in the leaf sheath increased as the level of fertilizer applied increased. Therefore, the infection rate of neck blast on the all panicle parts such as panicle base, panicle branches, spikelets, nodes, and internodes inside the leaf sheath didn't show differences due to varietal resistance or fertilizers applied. 11. Except for others among dominant species of fungi in the leaf sheath, only Gerlachia oryzae appeared to promote incidence of neck blast. It was assumed that days for heading of varieties were related with neck blast incidence.

  • PDF

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF

A Cross-Sectional Study on Fatigue and Self-Reported Physical Symptoms of Vinylhouse Farmers (비닐하우스 농작업자의 피로도와 주관적 신체증상에 관한 연구)

  • Lim, Gyung-Soon;Kim, Chung-Nam
    • Journal of agricultural medicine and community health
    • /
    • v.28 no.2
    • /
    • pp.15-29
    • /
    • 2003
  • Objectives: This study was done to find out fatigue and self-reported physical symptoms of Vinylhouse farmers. The results of this study could be used as a basic data to develop health promotion program for Vinylhouse farmers who are suffering from fatigue and physical symptoms. Methods: The 166 respondents, who were working in Vinylhouse and were living in a remoted area where the primary health post located, were participated in this study. Thirty: 30 items of self-reported fatigue scale was used to evaluate the farmers fatigue level which made by Japanese industrial and hygenic association(1988). Twenty four: 24 items of index used by researcher for self-reported physical symptoms was from Lee In Bae's(1999) modified Index which was originated from Cornell Medical Index(1949). Another questionnaires used in this study were developed by researcher through related documents. Results: The results of this study were as follows; Fatigue scores were high in accordance with women(t=-2.212, p<0.05), worse recognized health state(F=20.610, p<.001), lack of sleeping hours(F=3.937, p<0.05), eat irregularly(t=-3.883, p<0.001), don't take a bath after application of chemical(t=-2.950, p<0.01), working time per a day(F=5.633, p<0.01) & working time per a day in Vinylhouse(F=5.247, p<0.01) were long. Subjective physical symptoms were high in accordance with women(t=-3.176, p<0.01), worse recognized health state(F=35.335, p<0.001), and low education(F=3.467, p<0.05). eat irregularly(t=-3.384, p<0.01), alcohol drinking(t=-2.389, p<0.05). When farmers don't take a bath after application of chemical show high(t=-3.188, p<0.01). As a result, the factors affecting to Vinylhouse worker's health were irregular diet habit, scarce exercise, lack of proper rest, symptoms oriented from Vinylhouse work in contaminated environment with high temperature and humidity. Conclusions: Based on this study, health promotion program is necessary for Vinylhouse workers. Also, the development of continuously practical strategy of healthy life style including exercise and comprehensive health promotion program considered the country's social and cultural background are needed.

  • PDF

Studies on the Drying Mechanism of Stratified Soil-Comparison between Bare Surface and Grass plot- (성층토양의 건조기구에 관한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2913-2924
    • /
    • 1973
  • This study was to investigate the drying mechanism of stratified soil by investigating 'effects of the upper soil on moisture loss of the lower soil and vice versa' and at the same time by examining how the drying progressed in the stratified soils with bare surface and with vegetated surface respectively. There were six plots of the stratified soils with bare surface($A_1- A_6$ plot) and the same other six plots($B_1- B_5$ plot), with vegetated surface(white clover). These six plots were made by permutating two kinds of soils from three kinds of soils; clay loam(CL). Sandy loam(SL). Sand(s). Each layer was leveled by saturating sufficient water. Depth of each plot was 40cm by making each layer 20cm deep and its area. $90{\times}90(cm^2)$. The cell was put at the point of the central and mid-depth of the each layer in the each plot in order to measure the soil moisture by using OHMMETER. soil moisture tester, and movement of soil water from out sides was cut off by putting the vinyl on the four sides. The results obtained were as follow; 1. Drying progressed from the surface layer to the lower layer regardless of plots. There was a tendency thet drying of the upper soil was faster than that of the lower soil and drying of the plot with vegetated surface was also faster than that of the plot with bare surface. 2. Soil moisture was recovered at approximately the field capacity or moisture equivalent by infiltration in the course of drying, when there was a rainfall. 3. Effects of soil texture of the lower soil on dryness of the upper soil in the stratified soil were explained as follows; a) When the lower soil was S and the upper, CL or SL, dryness of the upper soils overlying the lower soil of S was much faster than that overlying the lower soil of SL or CL, because sandy soil, having the small field capacity value and playing a part of the layer cutting off to some extent capillary water supply. Drying of SL was remarkably faster than that of CL in the upper soil. b) When the lower soil was SL and the upper S or CL, drying of the upper soil was the slowest because of the lower SL, having a comparatively large field capacity value. Drying of CL tended to be faster than that of S in the upper soil. c) When the lower soil was CL and the upper S or SL, drying of the upper soil was relatively fast because of the lower CL, having the largest field capacity value but the slowest capillary conductivity. Drying of SL tended to be faster than that of S in the upper soil. 4. According to a change in soil moisture content of the upper soil and the lower soil during a day there was a tendency that soil moisture contents of CL and SL in the upper soil were decreased to its minimum value but that of S increased to its maximum value, during 3 hours between 12.00 and 15.00. There was another tendency that soil moisture contents of CL, SL and S in the lower soil were all slightly decreased by temperature rising and those in a cloudy day were smaller than those in a clear day. 5. The ratio of the accumulated soil moisture consumption to the accumulated guage evaporation in the plot with vegetated surface was generally larger than that in the plot with bare surface. The ratio tended to decrease in the course of time, and also there was a tendency that it mainly depended on the texture of the upper soil at the first period and the texture of the lower soil at the last period. 6. A change in the ratio of the accumulated soil moisture consumption was larger in the lower soil of SL than in the lower soil of S. when the upper soil was CL and the lower, SL and S. The ratio showed the biggest figure among any other plots, and the ratio in the lower soil plot of CL indicated sligtly bigger than that in the lower soil plot of S, when the upper soil was SL and the lower, CL and S. The ratio showed less figure than that of two cases above mentioned, when the upper soil was S and the lower CL and SL and that in the lower soil plot of CL indicated a less ratio than that in the lower soil plot of SL. As a result of this experiments, the various soil layers wero arranged in the following order with regard to the ratio of the accumulated soil moisture consumption: SL/CL>SL/S>CL/SL>CL/S$\fallingdotseq$S/SL>S/CL.

  • PDF

The Variation of the Dissolved Inorganic Nutrients in the Costal Area of Gunsan, Yellow Sea from 2001 to 2010 (서해 군산 연안의 2001년부터 2010년까지의 용존성무기영양염류의 변동)

  • Heo, Seung;Kweon, Jung-Ro;Park, Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.357-365
    • /
    • 2011
  • The variation of the dissolved inorganic nutrients were investigated four times per year in the costal area of Gunsan, Yellow Sea from 2001 to 2010. Water samples were collected at 10 stations and phsico-chemical parameters were analyzed including water temperature, salinity, suspended solids, dissolved oxygen, chemical oxygen demand, chlorophyll a and dissolved inorganic nutrients. The average of dissolved inorganic nitrogen(DIN) for ten years at Gunsan area showed similar concentration between surface and bottom. The average of DIN at surface was 0.421mg/L (0.198~0.846mg/L) and bottom was 0.344mg/L(0.148~0.717mg/L). The highest value of annual average of DIN at surface was 0.846mg/L in 2002 and the lowest value was 0.198mg/L in 2010. The percentage of ammonia, nitrite and nitrate for the average DIN of 10 years showed 27%, 3% and 70% which showed most of DIN was nitrate. Dissolved inorganic phosphate(DIP) for ten years at Gunsan area showed similar concentration between surface and bottom and DIP was decreasing from 2003 to 2010. The average of DIP of 10 years was 0.024mg/L and annual average 0.021mg/L in 2008, 0.007mg/L in 2009 and 0.008mg/L in 2010 which showed decreasing pattern from 2007 to 2010. The average of DIN/DIP ratio from 2002 to 2010 was 6.0(3.2~10.1) at surface and 4.6(2.6~7.0) at bottom. The average value of dissolved inorganic silicate from 2004 to 2010 showed 0.372mg/L at surface layer and 0.352mg/L at bottom layer and was on decreased from 2006 to 2010. The Spearman's correlation analysis was carried out to knowrelation among the salinity and dissolved inorganic nutrients at the surface and bottom layer. The correlation factor of DIN was -0.72, DIP was -0.46 and dissolved inorganic silicate was -0.63 at surface layer and DIN was -0.70, DIP was -0.44 and dissolved inorganic silicate was -0.57 at bottom layer. The dissolved inorganic nutrients at the nearshore of Gunsan was affected from the freshwater discharge of Geum river. Especially, a lot of DIN flowed into the nearshore of Gunsan from Guem river. The concentration of dissolved inorganic nutrients at Gunsan showed high at station 1, 2 and 3 and there was a little concentration differences according to the cruise time. The concentration of dissolved inorganic nutrients showed high value at the station 1, 2, 3 which exist nearshore of Gunsan city and it means these stations mainly affected by Geum river and Gunsan city. The annual average of dissolved inorganic nutrients showed gradually decreased from 2003 to 2010 and we need more research on this conditions.

Establishment of Analytical Method for Dichlorprop Residues, a Plant Growth Regulator in Agricultural Commodities Using GC/ECD (GC/ECD를 이용한 농산물 중 생장조정제 dichlorprop 잔류 분석법 확립)

  • Lee, Sang-Mok;Kim, Jae-Young;Kim, Tae-Hoon;Lee, Han-Jin;Chang, Moon-Ik;Kim, Hee-Jeong;Cho, Yoon-Jae;Choi, Si-Won;Kim, Myung-Ae;Kim, MeeKyung;Rhee, Gyu-Seek;Lee, Sang-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.214-223
    • /
    • 2013
  • BACKGROUND: This study focused on the development of an analytical method about dichlorprop (DCPP; 2-(2,4-dichlorophenoxy)propionic acid) which is a plant growth regulator, a synthetic auxin for agricultural commodities. DCPP prevents falling of fruits during their growth periods. However, the overdose of DCPP caused the unwanted maturing time and reduce the safe storage period. If we take fruits with exceeding maximum residue limits, it could be harmful. Therefore, this study presented the analytical method of DCPP in agricultural commodities for the nation-wide pesticide residues monitoring program of the Ministry of Food and Drug Safety. METHODS AND RESULTS: We adopted the analytical method for DCPP in agricultural commodities by gas chromatograph in cooperated with Electron Capture Detector(ECD). Sample extraction and purification by ion-associated partition method were applied, then quantitation was done by GC/ECD with DB-17, a moderate polarity column under the temperature-rising condition with nitrogen as a carrier gas and split-less mode. Standard calibration curve presented linearity with the correlation coefficient ($r^2$) > 0.9998, analysed from 0.1 to 2.0 mg/L concentration. Limit of quantitation in agricultural commodities represents 0.05 mg/kg, and average recoveries ranged from 78.8 to 102.2%. The repeatability of measurements expressed as coefficient of variation (CV %) was less than 9.5% in 0.05, 0.10, and 0.50 mg/kg. CONCLUSION(S): Our newly improved analytical method for DCPP residues in agricultural commodities was applicable to the nation-wide pesticide residues monitoring program with the acceptable level of sensitivity, repeatability and reproducibility.

Taxonomical Classification and Genesis of Dongsong Series Distributed on the Lava Plain in Cheolweon (철원 용암류대지 토양인 동송통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Park, Chan-Won;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.217-223
    • /
    • 2010
  • This study was conducted to reclassify Dongsong series based on the second edition of Soil Taxonomy and to discuss the formation of Dongsong series distributed on the lava plain at Cheolweon in Korea. Morphological properties of typifying pedon of Dongsong series were investigated, and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Dongsong series has brown (7.5YR 4/2) silty clay loam Ap horizon (0-16 cm), brown (7.5YR 4/2) silty clay loam BA horizon (16-22 cm), brown (7.5YR 4/2) silty clay Bt1 horizon (22-50 cm), reddish brown (5YR 5/4) silty clay Bt2 horizon (50-92 cm), and brown (7.5YR 4/3) silty clay loam Bt3 horizon (92-120 cm). It occurs on lava plain derived from baslt materials. The typifying pedon has higher bulk density than 0.90 Mg $m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to more than 120 cm, and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. It can be classified as Ultisol, not as Andisol or Alfisol. It has aquic conditions for some time in normal years in one or more horizons within 50 cm of the mineral soil surface, redoximorphic features between a depth of 25 cm, and a depth of 40 cm from the mineral soil surface, and redox concentrations, and 50%or more redox depletions with chroma of 2 or less in the matrix within the upper 12.5 cm of the argillic horizon. Therefore it can be classified as Aquult. It has episaturation, and keys out as Epiaquult. It has 50% or more chroma of 3 or more in one or more horizons between a depth of 25 cm from the mineral soil surface, and a depth of 75 cm. It can be classified as Aeric Aquult. Dongsong series have 35%or more clay at the particle-size control section, and have mesic soil temperature regime. Therefore they can be classified as fine, mesic family of Aeric Epiaquults, not as fine, mesic family of Typic Epiaqualfs. The Quarternary volcanic activities occurred in Jeju Island, Ulrung Island, Baekryeong Island, Cheolweon area, and Mt. Paekdu et al. in the Korean Penninsula. Most of them belong to the central eruption type, but Cheolweon area may be of the fissure eruption type. Dongsong series occur on Cheolweon lava plains derived from basaltic materials. Most soils distributed in Jeju Island, and derived from mainly pyroclastics are developed as Andisols. But Dongsong series distributed in Cheolweon lava plains which have a relatively dry climate and derived from basaltic materials are developed as Ultisols.

PROPAGATION OF THE BLUE CRAB, PORTUNUS TRITUBERCULATUS (MIERS) (꽃게 Portunus trituberculatus (MIERS)의 종묘 생산에 관한 연구)

  • PYEN Choong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.3
    • /
    • pp.187-198
    • /
    • 1970
  • The author succeeded in rearing the young blue crab from the first stage of zoe ato the true crab shape, and during this time he observed their growth and metamorphosis. The relationships between the number of eggs carried by female crabs (E) and the carapace width (C) and body weight (W) are shown as follows: E= 27.9049C-281.8155, E=0.5682 W-116.4606. There are five zoeal stages and a megalopa in the complete larval development of the blue crab. Water temperature in rearing aquaria ranged from 21.4 to $25.2^{\circ}C$. The duration of each zoeal stage was two days on the average. After the fifth moulting, the zoea becomes megalopa and 5 to 6 days later the megalopa moults and develops into the first stage of adult crab shape. The carapace width of megalopa measured about 1.70 mm and the carapace length, from the tip of the rostrum to the posterior dorsal margin of the carapace, was about 2.78 mm on the average. The carapace width and length of the first crab, 18 days after hatching, measured about 4.48 mm and 2.62 mm respectively. After two days, the first crab moulted and grew into the second crab with about 6.47 mm in carapace width and 4.66 mm in carapace length. The larval rearing in the outdoor tank shelved better results than in the indoor aquarium. The highest mortality occurred when the first stage of zoea moulted into the second stage. Percentage of crabs which survived, from the first crab to the ninth crab stages, was about $55\%$. The relationships between rearing days (D) and the carapace width (C), carapace length (L) and body weight (W) of the crab stages during 40 days of rearing are shown as follows. Carapace width, Indoor: C=1.1250D+1.7227 Outdoor C=1.3465D -0.2449 Carapace length, Indoor: L=0.6654D+1.6712 Outdoor: L=0.7893D+0.6919 Body Weight, Outdoor: $$W=1.15e^{0.12423D}$$ Indoor: $$W=6.759\times10^{-2}D^{1.2598}$$ (9-19 day old crabs) Outdoor: $$W=4.136\times10^{-2}D^{1.6024}$$ (21-40 day old crabs) During the crab stage, the following relationships between the number of moulting times and the carapace width (C), carapace length (L) and body weight (W) were found as follows: $$C=5.2e^{0.28119N}$$ $$L=3.65e^{0.26372N}$$ $$W= 0.14e^{0.7037N}$$ The relationships between the carapace length (L) and the carapace width (C) and body weight (W) of the crab stages are shown as follows: Carapace length, mm Formula 2.62-27.17 L=1.6864C-1.0387 7.47-18.53 $$W=9.367\times10^{-5}C^{3.5567}$$ 22.11-27.17 $$W=3.406\times10^{-5}C{3.8571}$$

  • PDF