• Title/Summary/Keyword: Time-series satellite images

Search Result 108, Processing Time 0.024 seconds

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

Similarity Measurement using Gabor Energy Feature and Mutual Information for Image Registration

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2011
  • Image registration is an essential process to analyze the time series of satellite images for the purpose of image fusion and change detection. The Mutual Information (MI) is commonly used as similarity measure for image registration because of its robustness to noise. Due to the radiometric differences, it is not easy to apply MI to multi-temporal satellite images using directly the pixel intensity. Image features for MI are more abundantly obtained by employing a Gabor filter which varies adaptively with the filter characteristics such as filter size, frequency and orientation for each pixel. In this paper we employed Bidirectional Gabor Filter Energy (BGFE) defined by Gabor filter features and applied the BGFE to similarity measure calculation as an image feature for MI. The experiment results show that the proposed method is more robust than the conventional MI method combined with intensity or gradient magnitude.

Analysis of Changes in NDVI Annual Cycle Models Caused by Forest Fire in Yangyang-gun, Gangwon-do Using Time Series of Landsat Images

  • Choi, Yoon Jo;Cho, Han Jin;Hong, Seung Hwan;Lee, Su Jin;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.3-11
    • /
    • 2016
  • Sixty four percent of Korean territory consists of forest which is fragile for forest fire. However, it is difficult to detect the disaster-induced damages due to topographic complexity in mountainous areas and harsh weather conditions. For this reason, satellite imaging systems have been widely utilized to detect the damage caused by forest fire. In particular, ground vegetation condition can be estimated from multi-spectral satellite images and change detection technique has been used to detect forest fire damages. However, since Korea has clear four seasons, simple change detection technique has limitation. In this regard, this study applied the NDVI(normalized difference vegetation index) annual cycle modeling technique on time-series of Landsat images from 1991 to 2007 to analyze influence of forest fire of Yangyang-gun, Gangwon-do in 2005 on vegetation condition. The encouraging result was obtained when comparing the areas where forest fire occurs with non-damaged areas. The mean value of NDVI was decreased by 0.07 before and after the forest fire. On the other hand, annual variability of NDVI had been increasing and peak value of NDVI was stationary after the forest fire. It is interpreted that understory vegetation was seriously damaged from the forest fire occurred in 2005.

Analysis of Urban Heat Island Effect Using Time Series of Landsat Images and Annual Temperature Cycle Model (시계열 Landsat TM 영상과 연간 지표온도순환 모델을 이용한 열섬효과 분석)

  • Hong, Seung Hwan;Cho, Han Jin;Kim, Mi Kyeong;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.113-121
    • /
    • 2015
  • Remote sensing technology using a multi-spectral satellite imagery can be utilized for the analysis of urban heat island effect in large area. However, weather condition of Korea mostly has a lot of clouds and it makes periodical observation using time-series of satellite images difficult. For this reason, we proposed the analysis of urban heat island effect using time-series of Landsat TM images and ATC model. To analyze vegetation condition and urbanization, NDVI and NDBI were calculated from Landsat images. In addition, land surface temperature was calculated from thermal infrared images to estimate the parameters of ATC model. Furthermore, the parameters of ATC model were compared based on the land cover map created by Korean Ministry of Environment to analyze urban heat island effect relating to the pattern of land use and land cover. As a result of a correlation analysis between calculated spectral indices and parameters of ATC model, MAST had high correlation with NDVI and NDBI (-0.76 and 0.69, respectively) and YAST also had correlation with NDVI and NDBI (-0.53 and 0.42, respectively). By comparing the parameters of ATC model based on land cover map, urban area had higher MAST and YAST than agricultural land and grassland. In particular, residential areas, industrial areas, commercial areas and transportation facilities showed higher MAST than cultural facilities and public facilities. Moreover, residential areas, industrial areas and commercial areas had higher YAST than the other urban areas.

Detection of The Pine Trees Damaged by Pine Wilt Disease using High Resolution Satellite and Airborne Optical Imagery

  • Lee, Seung-Ho;Cho, Hyun-Kook;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.409-420
    • /
    • 2007
  • Since 1988, pine wilt disease has spread over rapidly in Korea. It is not easy to detect the damaged pine trees by pine wilt disease from conventional remote sensing skills. Thus, many possibilities were investigated to detect the damaged pines using various kinds of remote sensing data including high spatial resolution satellite image of 2000/2003 IKONOS and 2005 QuickBird, aerial photos, and digital airborne data, too. Time series of B&W aerial photos at the scale of 1:6,000 were used to validate the results. A local maximum filtering was adapted to determine whether the damaged pines could be detected or not at the tree level from high resolution satellite images, and to locate the damaged trees. Several enhancement methods such as NDVI and image transformations were examined to find out the optimal detection method. Considering the mean crown radius of pine trees, local maximum filter with 3 pixels in radius was adapted to detect the damaged trees on IKONOS image. CIR images of 50 cm resolution were taken by PKNU-3(REDLAKE MS4000) sensor. The simulated CIR images with resolutions of 1 m, 2 m, and 4 m were generated to test the possibility of tree detection both in a stereo and a single mode. In conclusion, in order to detect the pine tree damaged by pine wilt disease at a tree level from satellite image, a spatial resolution might be less than 1 m in a single mode and/or 1 m in a stereo mode.

Arctic Sea Ice Motion Measurement Using Time-Series High-Resolution Optical Satellite Images and Feature Tracking Techniques (고해상도 시계열 광학 위성 영상과 특징점 추적 기법을 이용한 북극해 해빙 이동 탐지)

  • Hyun, Chang-Uk;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1215-1227
    • /
    • 2018
  • Sea ice motion is an important factor for assessing change of sea ice because the motion affects to not only regional distribution of sea ice but also new ice growth and thickness of ice. This study presents an application of multi-temporal high-resolution optical satellites images obtained from Korea Multi-Purpose Satellite-2 (KOMPSAT-2) and Korea Multi-Purpose Satellite-3 (KOMPSAT-3) to measure sea ice motion using SIFT (Scale-Invariant Feature Transform), SURF (Speeded Up Robust Features) and ORB (Oriented FAST and Rotated BRIEF) feature tracking techniques. In order to use satellite images from two different sensors, spatial and radiometric resolution were adjusted during pre-processing steps, and then the feature tracking techniques were applied to the pre-processed images. The matched features extracted from the SIFT showed even distribution across whole image, however the matched features extracted from the SURF showed condensed distribution of features around boundary between ice and ocean, and this regionally biased distribution became more prominent in the matched features extracted from the ORB. The processing time of the feature tracking was decreased in order of SIFT, SURF and ORB techniques. Although number of the matched features from the ORB was decreased as 59.8% compared with the result from the SIFT, the processing time was decreased as 8.7% compared with the result from the SIFT, therefore the ORB technique is more suitable for fast measurement of sea ice motion.

Study of Snow Depletion Characteristics at Two Mountainous Watersheds Using NOAA AVHRR Time Series Data

  • Shin, Hyungjin;Park, Minji;Chae, Hyosok;Kim, Saetbyul;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.315-324
    • /
    • 2013
  • Spatial information of snow cover and depth distribution is a key component for snowmelt runoff modeling. Wide snow cover areas can be extracted from NOAA AVHRR or Terra MODIS satellite images. In this study eight sets of annual snow cover data (1997-2006) in two mountainous watersheds (A: Chungju-Dam and B: Soyanggang-Dam) were extracted using NOAA AVHRR images. The distribution of snow depth within the Snow Cover Area (SCA) was generated using snowfall data from ground meteorological observation stations. Snow depletion characteristics for the two watersheds were analyzed snow distribution time series data. The decreased pattern of SCA can be expressed as a logarithmic function; the determination coefficients were 0.62 and 0.68 for the A and B watersheds, respectively. The SCA decreased over 70% within 10 days from the time of maximum SCA.

Change Detection of Vegetation Using Landsat Image - Focused on Daejeon City - (Landsat 영상을 이용한 식생의 변화 탐지- 대전광역시를 중심으로 -)

  • Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.239-246
    • /
    • 2010
  • Satellite image has capability of getting a broad data rapidly. It is possible that acquisition of change information about topography, land, ecosystem and urbanization etc. from multi-temporal satellite Images. In this study, the time-series change of vegetation has detected using four period Landsat Imageries. Also, NDVI was used to recognize the vitality of vegetation. Time series change of vegetation about study area was able to detect effectively by the results of classification and NDVI. It is expected that this study should be utilized as the decision making related to the effective management and plan establishment.

Land Cover Mapping and Availability Evaluation Based on Drone Images with Multi-Spectral Camera (다중분광 카메라 탑재 드론 영상 기반 토지피복도 제작 및 활용성 평가)

  • Xu, Chun Xu;Lim, Jae Hyoung;Jin, Xin Mei;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.589-599
    • /
    • 2018
  • The land cover map has been produced by using satellite and aerial images. However, these two images have the limitations in spatial resolution, and it is difficult to acquire images of a area at desired time because of the influence of clouds. In addition, it is costly and time-consuming that mapping land cover map of a small area used by satellite and aerial images. This study used multispectral camera-based drone to acquire multi-temporal images for orthoimages generation. The efficiency of produced land cover map was evaluated using time series analysis. The results indicated that the proposed method can generated RGB orthoimage and multispectral orthoimage with RMSE (Root Mean Square Error) of ${\pm}10mm$, ${\pm}11mm$, ${\pm}26mm$ and ${\pm}28mm$, ${\pm}27mm$, ${\pm}47mm$ on X, Y, H respectively. The accuracy of the pixel-based and object-based land cover map was analyzed and the results showed that the accuracy and Kappa coefficient of object-based classification were higher than that of pixel-based classification, which were 93.75%, 92.42% on July, 92.50%, 91.20% on October, 92.92%, 91.77% on February, respectively. Moreover, the proposed method can accurately capture the quantitative area change of the object. In summary, the suggest study demonstrated the possibility and efficiency of using multispectral camera-based drone in production of land cover map.

Identification of Flooded Areas and Post-flooding Conditions: Developing Flood Damage Mitigation Strategies Using Satellite Radar Imagery (레이더 위성영상을 활용한 침수피해 지역 파악 및 완화방안 연구)

  • Lee, Moungjin;Myeong, Soojeong;Jeon, Seongwoo;Won, Joong-Sun
    • Journal of Environmental Policy
    • /
    • v.8 no.2
    • /
    • pp.1-23
    • /
    • 2009
  • This study applied satellite radar imagery to identify flooded areas and examined post-flooding conditions using time-series satellite radar imagery for the development of flood damage mitigation strategies. Using time-series satellite radar images, this study constructed a map delineating areas vulnerable to frequent flood damage. The extracted flooded areas were combined with reference land use maps to examine flood damage by land use type. Major landuse types with severe flood damage were agricultural and forested areas. The analysis of the damage conditions, in terms of land use, served as the basis for developing flood damage mitigation policies, in conjunction with land use planning. The policies for flood damage mitigation can be summarized as land use regulations, land use planning, and flood damage mapping. A preventive measure to minimize flood damage of properties, which regulates developing areas with high flooding potential, is highly recommended. Although this study suggested a number of policies for flood damage mitigation, they represent only a small number of possible policies useful for mitigating flood damage and other environmental problems. Based upon the results of this study, it may be concluded that satellite radar imagery has great potential in providing basic data for large-scale environmental problems such as flooding and oil spills. Nevertheless, further examinations should be conducted and the application of satellite radar imagery should be used to examine other environmental problems.

  • PDF