• Title/Summary/Keyword: Time-series prediction

Search Result 906, Processing Time 0.025 seconds

Time Series Prediction Using a Multi-layer Neural Network with Low Pass Filter Characteristics (저주파 필터 특성을 갖는 다층 구조 신경망을 이용한 시계열 데이터 예측)

  • Min-Ho Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • In this paper a new learning algorithm for curvature smoothing and improved generalization for multi-layer neural networks is proposed. To enhance the generalization ability a constraint term of hidden neuron activations is added to the conventional output error, which gives the curvature smoothing characteristics to multi-layer neural networks. When the total cost consisted of the output error and hidden error is minimized by gradient-descent methods, the additional descent term gives not only the Hebbian learning but also the synaptic weight decay. Therefore it incorporates error back-propagation, Hebbian, and weight decay, and additional computational requirements to the standard error back-propagation is negligible. From the computer simulation of the time series prediction with Santafe competition data it is shown that the proposed learning algorithm gives much better generalization performance.

  • PDF

Electricity Price Prediction Model Based on Simultaneous Perturbation Stochastic Approximation

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • The paper presents an intelligent time series model to predict uncertain electricity market price in the deregulated industry environment. Since the price of electricity in a deregulated market is very volatile, it is difficult to estimate an accurate market price using historically observed data. The parameter of an intelligent time series model is obtained based on the simultaneous perturbation stochastic approximation (SPSA). The SPSA is flexible to use in high dimensional systems. Since prediction models have their modeling error, an error compensator is developed as compensation. The SPSA based intelligent model is applied to predict the electricity market price in the Pennsylvania-New Jersey-Maryland (PJM) electricity market.

DNA Coding Method for Time Series Prediction (시계열 예측을 위한 DNA 코딩 방법)

  • 이기열;선상준;이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.280-280
    • /
    • 2000
  • In this paper, we propose a method of constructing equation using bio-inspired emergent and evolutionary concepts. This method is algorithm that is based on the characteristics of the biological DNA and growth of plants. Here is. we propose a constructing method to make a DNA coding method for production rule of L-system. L-system is based on so-called the parallel rewriting mechanism. The DNA coding method has no limitation in expressing the production rule of L-system. Evolutionary algorithms motivated by Darwinian natural selection are population based searching methods and the high performance of which is highly dependent on the representation of solution space. In order to verify the effectiveness of our scheme, we apply it to one step ahead prediction of Mackey-Glass time series.

  • PDF

Machine Learning Based Architecture and Urban Data Analysis - Construction of Floating Population Model Using Deep Learning - (머신러닝을 통한 건축 도시 데이터 분석의 기초적 연구 - 딥러닝을 이용한 유동인구 모델 구축 -)

  • Shin, Dong-Youn
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • In this paper, we construct a prototype model for city data prediction by using time series data of floating population, and use machine learning to analyze urban data of complex structure. A correlation prediction model was constructed using three of the 10 data (total flow population, male flow population, and Monday flow population), and the result was compared with the actual data. The results of the accuracy were evaluated. The results of this study show that the predicted model of the floating population predicts the correlation between the predicted floating population and the current state of commerce. It is expected that it will help efficient and objective design in the planning stages of architecture, landscape, and urban areas such as tree environment design and layout of trails. Also, it is expected that the dynamic population prediction using multivariate time series data and collected location data will be able to perform integrated simulation with time series data of various fields.

LSTM-based Sales Forecasting Model

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1232-1245
    • /
    • 2021
  • In this study, prediction of product sales as they relate to changes in temperature is proposed. This model uses long short-term memory (LSTM), which has shown excellent performance for time series predictions. For verification of the proposed sales prediction model, the sales of short pants, flip-flop sandals, and winter outerwear are predicted based on changes in temperature and time series sales data for clothing products collected from 2015 to 2019 (a total of 1,865 days). The sales predictions using the proposed model show increases in the sale of shorts and flip-flops as the temperature rises (a pattern similar to actual sales), while the sale of winter outerwear increases as the temperature decreases.

Real-time Error Detection Based on Time Series Prediction for Embedded Sensors (임베디드 센서를 위한 시계열 예측 기반 실시간 오류 검출 기법)

  • Kim, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.11-21
    • /
    • 2011
  • An embedded sensor is significantly influenced by its spatial environment, such as barriers or distance, through low power and signal strength. Due to these causes, noise data frequently occur in an embedded sensor. Because the information acquired from the embedded sensor exists in a time series, it is hard to detect an error which continuously takes place in the time series information on a realtime basis. In this paper, we proposes an error detection method based on time-series prediction that detects error signals of embedded sensors in real time in consideration of the physical characteristics of embedded devices. The error detection method based on time-series prediction proposed in this paper determines errors in generated embedded device signals using a stable distance function. When detecting errors by monitoring signals from an embedded device, the stable distance function can detect error signals effectively by applying error weight to the latest signals. When detecting errors by monitoring signals from an embedded device, the stable distance function can detect error signals effectively by applying error weight to the latest signals.

Prediction of Electricity Sales by Time Series Modelling (시계열모형에 의한 전력판매량 예측)

  • Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.419-430
    • /
    • 2014
  • An accurate prediction of electricity supply and demand is important for daily life, industrial activities, and national management. In this paper electricity sales is predicted by time series modelling. Real data analysis shows the transfer function model with cooling and heating days as an input time series and a pulse function as an intervention variable outperforms other time series models for the root mean square error and the mean absolute percentage error.

Radial basis function network design for chaotic time series prediction (혼돈 시계열의 예측을 위한 Radial Basis 함수 회로망 설계)

  • 신창용;김택수;최윤호;박상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.602-611
    • /
    • 1996
  • In this paper, radial basis function networks with two hidden layers, which employ the K-means clustering method and the hierarchical training, are proposed for improving the short-term predictability of chaotic time series. Furthermore the recursive training method of radial basis function network using the recursive modified Gram-Schmidt algorithm is proposed for the purpose. In addition, the radial basis function networks trained by the proposed training methods are compared with the X.D. He A Lapedes's model and the radial basis function network by nonrecursive training method. Through this comparison, an improved radial basis function network for predicting chaotic time series is presented. (author). 17 refs., 8 figs., 3 tabs.

  • PDF

Predicting the core thermal hydraulic parameters with a gated recurrent unit model based on the soft attention mechanism

  • Anni Zhang;Siqi Chun;Zhoukai Cheng;Pengcheng Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2343-2351
    • /
    • 2024
  • Accurately predicting the thermal hydraulic parameters of a transient reactor core under different working conditions is the first step toward reactor safety. Mass flow rate and temperature are important parameters of core thermal hydraulics, which have often been modeled as time series prediction problems. This study aims to achieve accurate and continuous prediction of core thermal hydraulic parameters under instantaneous conditions, as well as test the feasibility of a newly constructed gated recurrent unit (GRU) model based on the soft attention mechanism for core parameter predictions. Herein, the China Experimental Fast Reactor (CEFR) is used as the research object, and CEFR 1/2 core was taken as subject to carry out continuous predictive analysis of thermal parameters under transient conditions., while the subchannel analysis code named SUBCHANFLOW is used to generate the time series of core thermal-hydraulic parameters. The GRU model is used to predict the mass flow and temperature time series of the core. The results show that compared to the adaptive radial basis function neural network, the GRU network model produces better prediction results. The average relative error for temperature is less than 0.5 % when the step size is 3, and the prediction effect is better within 15 s. The average relative error of mass flow rate is less than 5 % when the step size is 10, and the prediction effect is better in the subsequent 12 s. The GRU model not only shows a higher prediction accuracy, but also captures the trends of the dynamic time series, which is useful for maintaining reactor safety and preventing nuclear power plant accidents. Furthermore, it can provide long-term continuous predictions under transient reactor conditions, which is useful for engineering applications and improving reactor safety.

Comparison and Implementation of Optimal Time Series Prediction Systems Using Machine Learning (머신러닝 기반 시계열 예측 시스템 비교 및 최적 예측 시스템 구현)

  • Yong Hee Han;Bangwon Ko
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.183-189
    • /
    • 2024
  • In order to effectively predict time series data, this study proposed a hybrid prediction model that decomposes the data into trend, seasonality, and residual components using Seasonal-Trend Decomposition on Loess, and then applies ARIMA to the trend component, Fourier Series Regression to the seasonality component, and XGBoost to the remaining components. In addition, performance comparison experiments including ARIMA, XGBoost, LSTM, EMD-ARIMA, and CEEMDAN-LSTM models were conducted to evaluate the prediction performance of each model. The experimental results show that the proposed hybrid model outperforms the existing single models with the best performance indicator values in MAPE(3.8%), MAAPE(3.5%), and RMSE(0.35) metrics.