• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.035 seconds

The fGARCH(1, 1) as a functional volatility measure of ultra high frequency time series (함수적 변동성 fGARCH(1, 1)모형을 통한 초고빈도 시계열 변동성)

  • Yoon, J.E.;Kim, Jong-Min;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.667-675
    • /
    • 2018
  • When a financial time series consists of daily (closing) returns, traditional volatility models such as autoregressive conditional heteroskedasticity (ARCH) and generalized ARCH (GARCH) are useful to figure out daily volatilities. With high frequency returns in a day, one may adopt various multivariate GARCH techniques (MGARCH) (Tsay, Multivariate Time Series Analysis With R and Financial Application, John Wiley, 2014) to obtain intraday volatilities as long as the high frequency is moderate. When it comes to the ultra high frequency (UHF) case (e.g., one minute prices are available everyday), a new model needs to be developed to suit UHF time series in order to figure out continuous time intraday-volatilities. Aue et al. (Journal of Time Series Analysis, 38, 3-21; 2017) proposed functional GARCH (fGARCH) to analyze functional volatilities based on UHF data. This article introduces fGARCH to the readers and illustrates how to estimate fGARCH equations using UHF data of KOSPI and Hyundai motor company.

Modelling and Residual Analysis for Water Level Series of Upo Wetland (우포늪 수위 자료의 시계열 모형화 및 잔차 분석)

  • Kim, Kyunghun;Han, Daegun;Kim, Jungwook;Lim, Jonghun;Lee, Jongso;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.66-76
    • /
    • 2019
  • Recently, natural disasters such as floods and droughts are frequently occurred due to climate change and the damage is also increasing. Wetland is known to play an important role in reducing and minimizing the damage. In particular, water level variability needs to be analyzed in order to understand the various functions of wetland as well as the reduction of damage caused by natural disaster. Therefore, in this study, we fitted water level series of Upo wetland in Changnyeong, Gyeongnam province to a proper time series model and residual test was performed to confirm the appropriateness of the model. In other words, ARIMA model was constructed and its residual tests were performed using existing nonparametric statistics, BDS statistic, and Close Returns Histogram(CRH). The results of residual tests were compared and especially, we showed the applicability of CRH to analyze the residuals of time series model. As a result, CRH produced not only accurate randomness test result, but also produced result in a simple calculation process compared to the other methods. Therefore, we have shown that CRH and BDS statistic can be effective tools for analyzing residual in time series model.

Deep Learning-Based Short-Term Time Series Forecasting Modeling for Palm Oil Price Prediction (팜유 가격 예측을 위한 딥러닝 기반 단기 시계열 예측 모델링)

  • Sungho Bae;Myungsun Kim;Woo-Hyuk Jung;Jihwan Woo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.45-57
    • /
    • 2024
  • This study develops a deep learning-based methodology for predicting Crude Palm Oil (CPO) prices. Palm oil is an essential resource across various industries due to its yield and economic efficiency, leading to increased industrial interest in its price volatility. While numerous studies have been conducted on palm oil price prediction, most rely on time series forecasting, which has inherent accuracy limitations. To address the main limitation of traditional methods-the absence of stationarity-this research introduces a novel model that uses the ratio of future prices to current prices as the dependent variable. This approach, inspired by return modeling in stock price predictions, demonstrates superior performance over simple price prediction. Additionally, the methodology incorporates the consideration of lag values of independent variables, a critical factor in multivariate time series forecasting, to eliminate unnecessary noise and enhance the stability of the prediction model. This research not only significantly improves the accuracy of palm oil price prediction but also offers an applicable approach for other economic forecasting issues where time series data is crucial, providing substantial value to the industry.

Sufficient Conditions for Stationarity of Smooth Transition ARMA/GARCH Models

  • Lee, Oe-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.237-245
    • /
    • 2007
  • Nonlinear asymmetric time series models have the growing interest in econometrics and finance. Threshold model is one of the successful asymmetric model. We consider a smooth transition ARMA model which converges a.s. to a threshold ARMA model and show that the smooth transition ARMA model admits a stationary measure, provided a suitable condition on the coefficients of the autoregressive parts of the different regimes is satisfied. Stationarity of a smooth transition GARCH model is also obtained.

  • PDF

A Study on Daily Water Demand Prediction Model (급수량(給水量) 단기(短期) 수요예측(需要豫測)에 대한 연구(硏究))

  • Koo, Jayoug;Koizwui, Akirau;Inakazu, Toyono
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.109-118
    • /
    • 1997
  • In this study, we examined the structural analysis of water demand fluctuation for water distribution control of water supply network. In order to analyze for the length of stationary time series, we calculate autocorrelation coefficient of each case equally divided data size. As a result, it was found that, with the data size of around three months, any case could be used as stationary time series. we analyze cross-correlation coefficient between the daily water consumption's data and primary influence factors. As a result, we have decided to use weather conditions and maximum temperature as natural primary factors and holidays as a social factor. Applying the multiple ARIMA model, we obtains an effective model to describe the daily water demand prediction. From the forecasting result, even though we forecast water distribution quantity of the following year, estimated values well express the flctuations of measurements. Thus, the suitability of the model for practical use can be confirmed. When this model is used for practical water distribution control, water distribution quantity for the following day should be found by inputting maximum temperature and weather conditions obtained from weather forecast, and water purification plants and service reservoirs should be operated based on this information while operation of pumps and valves should be set up. Consequently, we will be able to devise a rational water management system.

  • PDF

Modeling and assessment of VWNN for signal processing of structural systems

  • Lin, Jeng-Wen;Wu, Tzung-Han
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.53-67
    • /
    • 2013
  • This study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake. The acceleration and applied force of a structure were measured at current time step and the velocity and displacement were estimated through linear integration. These data were used as input to predict the structural acceleration at next time step. The computation tool used was the Volterra/Wiener neural network (VWNN) which contained the mathematical model to predict the acceleration. For alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was utilized as the signal processing tool, including the Taylor series components in the input nodes of the neural network. The number of the intermediate layer nodes in the neural network model, containing the training and simulation stage, was evaluated and optimized. Discussions on the influences of the gradient descent with adaptive learning rate algorithm and the Levenberg-Marquardt algorithm, both for determining the network weights, on prediction errors were provided. During the simulation stage, different earthquake excitations were tested with the optimized settings acquired from the training stage to find out which of the algorithms would result in the smallest error, to determine a proper simulation model.

Linear system parameter as an indicator for structural diagnosis of short span bridges

  • Kim, Chul-Woo;Isemoto, Ryo;Sugiura, Kunitomo;Kawatani, Mitsuo
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • This paper intended to investigate the feasibility of bridge health monitoring using a linear system parameter of a time series model identified from traffic-induced vibrations of bridges through a laboratory moving vehicle experiment on scaled model bridges. This study considered the system parameter of the bridge-vehicle interactive system rather than modal ones because signals obtained under a moving vehicle are not the responses of the bridge itself but those of the interactive system. To overcome the shortcomings of modal parameter-based bridge diagnosis using a time series model, this study considered coefficients of Autoregressive model (AR coefficients) as an early indicator of anomaly of bridges. This study also investigated sensitivity of AR coefficients in detecting anomaly of bridges. Observations demonstrated effectiveness of using AR coefficients as an early indicator for anomaly of bridges.

Multi-Site Stochastic Weather Generator for Daily Rainfall in Korea (시공간구조를 가지는 확률적 강우 모형)

  • Kwak, Minjung;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.475-485
    • /
    • 2014
  • A stochastic weather generator based on a generalized linear model (GLM) approach is a commonly used tools to simulate a time series of daily weather. In this paper, we propose a multi-site weather generator with applications to historical data in South Korea. The proposed method extends the approach of Kim et al. (2012) by considering spatial dependence in the model. To reduce this phenomenon, we also incorporate a time series of seasonal mean precipitations of South Korea in the GLM weather generator as a covariate. Spatial dependence was incorporated into the model through a latent Gaussian process. We apply the proposed model to precipitation data provided by 62 stations in Korea from 1973{2011.

Analysis of Health Promotion determinants in Major OECD Countries: A pooled cross-sectional time series (건강결과와 건강결정요인간의 횡단면 시계열 연구 : 주요 OECD 국가를 대상으로)

  • Choi, Yoon-Jung;Bae, Sung-Il;Lee, Young-Ho;Kang, Min-Sun
    • Health Policy and Management
    • /
    • v.19 no.4
    • /
    • pp.33-52
    • /
    • 2009
  • Health promotion policies have needed to assess in detailed and evidence-based work to set a policy goal and clear future directions of health promotion in Korea. To identify the major factors related with health promotion, we assessed the associations between public health outcome (potential years of life loss, PYLL) and national health determinants. For this purpose, we used a pooled cross sectional time-series regression analysis with corrected fixed effect models involving sixteen member countries of the Organisation for Economic Cooperation and Development during the period 1970 to 2001. The PYLL was positively associated with tobacco and alcohol consumption (model 1 and 2) and calories intake (model 2 and 3) while the PYLL was negatively associated with GDP, fruit and vegetable intake (model 2), number of doctors (model 3), coverage rates of health care security, and elderly population rates (model 4). In conclusion, health behaviors related with tobacco, alcohol, and nutrition were significant health determinants for health outcome. Overall analysis results of this study will provide a guidance toward improved macro- and micro-policy development for future health promotion policy in Korea.

Evaluation of the Dam Release Effect on Water Quality using Time Series Models (시계열 모형의 적용을 통한 댐 방류의 수질개선 효과 검토)

  • Kim, Sangdan;Yoo, Chulsang
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.685-691
    • /
    • 2004
  • Water quality forecasting with long term flow is important for management and operation of river environment. However, it is difficult to set up and operate a physical model for water quality forecasting due to large uncertainty in the data required for model setting. Therefore, relatively simpler stochastic approaches are adopted for this problem. In this study we try several multivariate time series models such as ARMAX models for the possible substitute for water quality forecasting. Those models are applied to the BOD and COD levels at Noryangin station, Han river, and also evaluated the effect of release from Paldang dam on them. Monthly BOD and COD data from 1985 to 1991 (7 years) are used for model building and another two year data for model testing. As a result of the study, the effect of improvement on water quality is much more effective combining with the water quality improvement of dam release than considering only increment of dam release in the downstream Han river.