• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.039 seconds

A Forecast Method of Marine Traffic Volume through Time Series Analysis (시계열 분석을 통한 해상교통량 예측 방안)

  • Yoo, Sang-Rok;Park, Young-Soo;Jeong, Jung-Sik;Kim, Chul-Seong;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.612-620
    • /
    • 2013
  • In this study, time series analysis was tried, which is widely applied to demand forecast of diverse fields such as finance, economy, trade, and so on, different from previous regression analysis. Future marine traffic volume was forecasted on the basis of data of the number of ships entering Incheon port from January 1996 to June 2013, through courses of stationarity verification, model identification, coefficient estimation, and diagnostic checking. As a result of prediction January 2014 to December 2015, February has less traffic volume than other months, but January has more traffic volume than other months. Also, it was found out that Incheon port was more proper to ARIMA model than exponential smoothing method and there was a difference of monthly traffic volume according to seasons. The study has a meaning in that future traffic volume was forecasted per month with time series model. Also, it is judged that forecast of future marine traffic volume through time series model will be the more suitable model than prediction of marine traffic volume with previous regression analysis.

Multivariate Time Series Simulation With Component Analysis (독립성분분석을 이용한 다변량 시계열 모의)

  • Lee, Tae-Sam;Salas, Jose D.;Karvanen, Juha;Noh, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.694-698
    • /
    • 2008
  • In hydrology, it is a difficult task to deal with multivariate time series such as modeling streamflows of an entire complex river system. Normal distribution based model such as MARMA (Multivariate Autorgressive Moving average) has been a major approach for modeling the multivariate time series. There are some limitations for the normal based models. One of them might be the unfavorable data-transformation forcing that the data follow the normal distribution. Furthermore, the high dimension multivariate model requires the very large parameter matrix. As an alternative, one might be decomposing the multivariate data into independent components and modeling it individually. In 1985, Lins used Principal Component Analysis (PCA). The five scores, the decomposed data from the original data, were taken and were formulated individually. The one of the five scores were modeled with AR-2 while the others are modeled with AR-1 model. From the time series analysis using the scores of the five components, he noted "principal component time series might provide a relatively simple and meaningful alternative to conventional large MARMA models". This study is inspired from the researcher's quote to develop a multivariate simulation model. The multivariate simulation model is suggested here using Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Three modeling step is applied for simulation. (1) PCA is used to decompose the correlated multivariate data into the uncorrelated data while ICA decomposes the data into independent components. Here, the autocorrelation structure of the decomposed data is still dominant, which is inherited from the data of the original domain. (2) Each component is resampled by block bootstrapping or K-nearest neighbor. (3) The resampled components bring back to original domain. From using the suggested approach one might expect that a) the simulated data are different with the historical data, b) no data transformation is required (in case of ICA), c) a complex system can be decomposed into independent component and modeled individually. The model with PCA and ICA are compared with the various statistics such as the basic statistics (mean, standard deviation, skewness, autocorrelation), and reservoir-related statistics, kernel density estimate.

  • PDF

Study on the Prediction of Motion Response of Fishing Vessels using Recurrent Neural Networks (순환 신경망 모델을 이용한 소형어선의 운동응답 예측 연구)

  • Janghoon Seo;Dong-Woo Park;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.505-511
    • /
    • 2023
  • In the present study, a deep learning model was established to predict the motion response of small fishing vessels. Hydrodynamic performances were evaluated for two small fishing vessels for the dataset of deep learning model. The deep learning model of the Long Short-Term Memory (LSTM) which is one of the recurrent neural network was utilized. The input data of LSTM model consisted of time series of six(6) degrees of freedom motions and wave height and the output label was selected as the time series data of six(6) degrees of freedom motions. The hyperparameter and input window length studies were performed to optimize LSTM model. The time series motion response according to different wave direction was predicted by establised LSTM. The predicted time series motion response showed good overall agreement with the analysis results. As the length of the time series increased, differences between the predicted values and analysis results were increased, which is due to the reduced influence of long-term data in the training process. The overall error of the predicted data indicated that more than 85% of the data showed an error within 10%. The established LSTM model is expected to be utilized in monitoring and alarm systems for small fishing vessels.

A Novel Model, Recurrent Fuzzy Associative Memory, for Recognizing Time-Series Patterns Contained Ambiguity and Its Application (모호성을 포함하고 있는 시계열 패턴인식을 위한 새로운 모델 RFAM과 그 응용)

  • Kim, Won;Lee, Joong-Jae;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.449-456
    • /
    • 2004
  • This paper proposes a novel recognition model, a recurrent fuzzy associative memory(RFAM), for recognizing time-series patterns contained an ambiguity. RFAM is basically extended from FAM(Fuzzy Associative memory) by adding a recurrent layer which can be used to deal with sequential input patterns and to characterize their temporal relations. RFAM provides a Hebbian-style learning method which establishes the degree of association between input and output. The error back-propagation algorithm is also adopted to train the weights of the recurrent layer of RFAM. To evaluate the performance of the proposed model, we applied it to a word boundary detection problem of speech signal.

Improvement of Analytical Probabilistic Model for Urban Storm Water Simulation using 3-parameter Mixed Exponential Probability Density Function (3변수 혼합 지수 확률밀도함수를 이용한 도시지역 강우유출수의 해석적 확률모형 개선)

  • Choi, Daegyu;Jo, Deok Jun;Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.345-353
    • /
    • 2008
  • In order to design storage-based non-point source management facilities, the aspect of statistical features of the entire precipitation time series should be considered since non-point source pollutions are delivered by continuous rainfall runoffs. The 3-parameter mixed exponential probability density function instead of traditional single-parameter exponential probability density function is applied to represent the probabilistic features of long-term precipitation time series and model urban stormwater runoff. Finally, probability density functions of water quality control basin overflow are derived under two extreme intial conditions. The 31-year continuous precipitation time series recorded in Busan are analyzed to show that the 3-parameter mixed exponential probability density function gives better resolution.

Forecasting Chinese Yuan/USD Via Combination Techniques During COVID-19

  • ASADULLAH, Muhammad;UDDIN, Imam;QAYYUM, Arsalan;AYUBI, Sharique;SABRI, Rabia
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.221-229
    • /
    • 2021
  • This study aims to forecast the exchange rate of the Chinese Yuan against the US Dollar by a combination of different models as proposed by Poon and Granger (2003) during the Covid-19 pandemic. For this purpose, we include three uni-variate time series models, i.e., ARIMA, Naïve, Exponential smoothing, and one multivariate model, i.e., NARDL. This is the first of its kind endeavor to combine univariate models along with NARDL to the best of our knowledge. Utilizing monthly data from January 2011 to December 2020, we predict the Chinese Yuan against the US dollar by two combination criteria i.e. var-cor and equal weightage. After finding out the individual accuracy, the models are then assessed through equal weightage and var-cor methods. Our results suggest that Naïve outperforms all individual & combination of time series models. Similarly, the combination of NARDL and Naïve model again outperformed all of the individual as well as combined models except the Naïve model, with the lowest MAPE value of 0764. The results suggesting that the Chinese Yuan exchange rate against the US Dollar is dependent upon the recent observations of the time series. Further evidence shows that the combination of models plays a vital role in forecasting which commensurate with the literature.

Fashion Brand Sales Forecasting Analysis Using ARDL Time Series Model -Focusing on Brand and Advertising Endorser's Web Search Volume, Information Amount, and Brand Promotion- (ARDL 시계열 모형을 활용한 패션 브랜드의 매출 예측 분석 -패션 브랜드와 광고모델의 웹 검색량, 정보량, 가격할인 프로모션을 중심으로-)

  • Seo, Jooyeon;Kim, Hyojung;Park, Minjung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.5
    • /
    • pp.868-889
    • /
    • 2022
  • Fashion companies are using a big data approach as a key strategic analysis to predict and forecast sales. This study investigated the effectiveness of the past sales, web search volume, information amount, brand promotion, and the advertising endorser on the sales forecasting model. The study conducted the autoregressive distributed lag (ARDL) time series model using the internal and external social big data of a national fashion brand. Results indicated that the brand's past sales, search volume, promotion, and amount of advertising endorser information amount significantly affected the sales forecast, whereas the brand's advertising endorser search volume and information amount did not significantly influence the sales forecast. Moreover, the brand's promotion had the highest correlation with sales forecasting. This study adds to information-searching behavior theory by measuring consumers' brand involvement. Last, this study provides digital marketers with implications for developing profitable marketing strategies on the basis of consumers' interest in the brand and advertising endorser.

Predicting Desired Fertigation for Rose Using Internet of Things Sensors and Time-Series Model

  • Mingle Xu;Sook Yoon;Jongbin Park;Jeonghyun Baek;Dong Sun Park
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.16-22
    • /
    • 2024
  • Greenhouse provides opportunities to have big yield effectively and efficiently. However, many resources are required, such as fertigation, a kind of solution of nutrient. Resources supply is essential to cultivate crops. Inadequate supply will hinder plant growth whereas the surplus results in waste. In this paper, we are especially interested in the fertigation supply. Further, excess fertigation leads to drainage which is difficult to purify and threatens the environment. To address this challenge, we aim to predict the desired amount of fertigation. To achieve this objective, we first establish a prototype to record the climate conditions inside a rose greenhouse using Internet of Things sensors. Simultaneously, the desired fertigation amount is obtained with the help of weight scale and historical data of fertigation supply and drainage. Second, a method is proposed to predict the desired fertigation by taking the sensors' data as input, with a time-series model. Extensive experimental results suggest the potential of our objective and method. To be specific, our method achieves an average MAE 0.032 in the validation datasets.

  • PDF

Model Misspecification in Nonstationary Seasonal Time Series

  • Sung K. Ahn;Park, Young J.;Cho, Sin-Sup
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.67-90
    • /
    • 1998
  • In this paper we analytically study model misspecification that arises in regression analysis of nonstationary seasonal time series. We assume the underlying data generating process is a seasonally or a regularly and seasonally integrated process. We first study consequences of totally misspecified cases where seasonal indicator variables, a linear time trend, or another statistically independent seasonally integrated process are used as predictor variables in order to model the nonstationary seasonal behavior of the dependent variable. Then we study consequences of partially misspecified cases where the dependent variable and a predictor variable are cointegrated at some, but not all of the frequencies corresponding to the nonstationary roots.

  • PDF

Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model (Quadratic Volterra 모델을 이용한 자유지지 라이저의 동적 응답 시계열 예측)

  • Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.274-282
    • /
    • 2014
  • Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.