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ABSTRACT

In this paper we analytically study model misspecification that
arises in regression analysis of nonstationary seasonal time series. We
assume the underlying data generating process is a seasonally or a reg-
ularly and seasonally integrated process. We first study consequences
of totally misspecified cases where seasonal indicator variables, a linear
time trend, or another statistically independent seasonally integrated
process are used as predictor variables in order to model the nonsta-
tionary seasonal behavior of the dependent variable. Then we study
consequences of partially misspecified cases where the dependent vari-
able and a predictor variable are cointegrated at some, but not all of
the frequencies corresponding to the nonstationary roots.
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1. INTRODUCTION

Nonstationary time series arise frequently in business and economics, and
modeling nonstationary time series plays an important role in empirical stud-
ies. In general, for a certain class of time series, the nonstationary part of a
time series can be modeled by a deterministic function or a stochastic func-
tion. Because the characteristics of and the forecasts from these two types of
functions are quite different it has drawn a great deal of attention to decide
which type of the functions is appropriate for describing the nonstationary
behavior. For example, the issue of the trend stationary versus the difference
stationary, that is, the linear time trend versus the random walk, has long
been studied and resulted in great body of literature on statistical inference
of a unit root. Especially, some of the likely consequences of model misspec-
ification discussed in Granger and Newbold (1974) brought greater attention
to the issue, and Phillips (1986) and Durlauf and Phillips (1988) provided
analytical studies of the findings in Granger and Newbold (1974).

Seasonal time series also arise frequently. It is also important to deter-
mine if the seasonal behavior can be properly modeled by a deterministic
function such as seasonal indicator variables and other periodic functions or
by a stochastic function such as a seasonally integrated process. The issue
has been studied, almost in parallel with unit root tests, as seasonal unit root
tests. Abeysinghe (1991) offers, through a Monte Carlo simulation study,
some likely consequences when a nonstationary seasonal process is regressed
on another statistically independent nonstationary seasonal process and sea-
sonal indicator variables. And Abeysinghe (1994) analytically studied effects
on the sample autocovariance by inappropriate use of seasonal indicator vari-
ables.

In this paper we study some consequences of two types of model mis-
specification in regression of a nonstationary seasonal time series which is
seasonally integrated or regularly and seasonally integrated. The first type is
misspecification of predictors by deterministic functions or by another statis-
tically independent seasonally integrated process. The second type is partial
misspecification where the predictor variable and the dependent variable are
cointegrated at some, but not all of the seasonal frequencies.
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2. PRELIMINARY RESULTS

For a seasonally integrated process Y; and a process X;, which can be
seasonally integrated or deterministic, one may consider a regression model

Y; :CYXt+Nt. (21)

In this paper we are mainly concerned with two cases: a totally misspecified
case where a = 0 so that Y; = N;; and a partially misspecified case where
o # 0 and NV, is nonstationary, that is, the predictor variable cannot “capture
fully” the nonstationary behavior of the dependent variable. If X, and Y; are
independent in (2.1), it is an example of a totally misspecified model. If X,
and Y; are quarterly seasonal time series cointegrated at frequency zero only,
1t 1s an example of a partially misspecified model. To be specific, for such X,
and Y; there exists non-zero a such that Y, — aX,; does not have a unit root
in its autoregressive (AR) representation, that is,

(1+ B)(1+ B*Y; = o(1 + B)(1 + B) X, + u,,

where u, is a stationary process and B is the usual back shift operator such
that BY; = Y;_1. Then,

Y = aX; + N,

where a # 0 and nonstationary N, satisfies (1 + B)(1 + B?)N, = u,, and
thus the model in (2.1) is partially misspecified. We note that Shin and
Sarkar (1995) considered partially misspecified cases where the order of X,
is strictly higher than that of N,. However, for seasonal nonstationary time
series, partially misspecified cases can occur where the orders of X; and N,
are the same. In the above example X, and N, are all O,(¢'/?).

For X; and N; in (2.1) we assume that there exist real numbers a,
and b, such that as n — oo (a; X[,,,],bn N[nu]) converges in distribution
to (f(r),g(u)) for some continuous functions f and g, which are possibly
random, on [0,1], where [z] denote the integer part of z. We note for a to-
tally misspecified model Y; = O,(b,) and for a partially misspecified model
Y: = Op(maz{an,b,}). Then we have the following asymptotic results for
least squares regression of (2.1).

Lemma 1. For the model in (2.1), based on n pairs of observations (X, Y;),
t=1, ..., n,let & be the least squares estimator of a, t,— =aq the regression
t statistic for testing a = ag, 6% the mean squared error, N, the residual,
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and R? the coefficient of determination. Then, under the assumption stated

above, .
) p Jo f(r)g(r)dr
5, &) =T TSy

b7 Ninr) 2 g(r) — ££(r),
262 B [ ()~ ef(r)ar=,
fo f(T) dr }1/2
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Further, if o = 0 or if @ # 0 and a,/b, — 0, then

2 D fo1 f(r)dr .,
R _)——folg(r)zdr )

If o # 0 and a, /b, — ¢, then

2f0 f(r)dr
fo (7‘)2(17"

Finally, if @ # 0 and a,/b, — 00, then R* »% 1.

22>(£-¥-ac)

A detailed proof of the lemma is in the technical appendix. The asymp-
totic behavior of & — o depends on the orders of N; and X;. Especially, if
X, is of higher order than N, then & converges to o and is consistent, while
the regression t statistic diverges. Therefore, although & is consistent in a
totally misspecified model, the null hypothesis of a = 0 will be rejected and
a spurious relationship occurs because of the divergent ¢ statistic. If X; and
N, are of the same order, then & — a converges to a non-degenerate limiting
distribution and & is inconsistent. If X, is of lower order than IV;, then & —a
diverges. Regardless of the order of N, and X, in a misspecified regression
model as in (2.1), the order of the residual Nt is the same as the order of IV;.
For partially misspecified models, if the order of N, is higher than or equal to
that of X;, then R? converges to a non-degenerate limiting distribution,; if the
order of NV, is lower, then R? converges to 1 in probability. However, in totally
misspecified models, R? converges to a non-degenerate limiting distribution
regardless of the orders of V; and X;.

In a simulation study of Abeysinghe (1991), X, and Y; are generated
independently from various data generating processes which are all O,(t1/?).
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Therefore, the higher rejection rate of & = 0 in the simulation study can be
explained by the divergent ¢ statistic in Lemma 1.

Often, the dependent variable Y; and the predictor variable X, are “ad-
justed” for another variable Z;. Examples of Z, include a time variable for
detrending and periodic functions for seasonal adjustment. In order to study
the effect of data adjustment by a variable Z; which is statistically indepen-
dent of both X; and Y; and also of V;, one may consider

}/t = aXt + ’)’Zt + Nt (22)

with v = 0. For Z; we also assume that there exists a real number ¢, such
that as n — oo ¢, 1Z[m] converges in distribution to a continuous function
h(r), which is possibly random on [0, 1].

We can rewrite (2.2) as

Yt = a,’:;;c + V*Zt + Nta

where 7f = X; — (L 2})" (X X:Z1)Z; and v* = v+ (T Z U XiZy)a.
Then, because #f and Z; are orthogonal the least squares estimator of a in
(2.2) and its statistical properties involve Y;, #¥, and N, .

Because the 7 are the residuals from a (totally) misspecified regression
model of X; on Z;, their stochastic order is the same as the orders of X, ac-
cording to Lemma 1. Therefore, asymptotic properties of &, the least squares
estimator of o in (2.2) depends on the orders of X; and N,. By similar ar-
guments, asymptotic properties of 4 depends of those of Z; and N;, and we
have the following results.

Lemma 2. Let & be the least squares estimator of @, t4—q, the regression
t statistic for testing a@ = ag, ¥ the least squares estimator of v, and ty=0
the regression ¢ statistic for testing v = 0 in (2.2). Then, & = O,(b,/ay),
ta=ap = Op(n'/2), ¥ = Op(ca/an), and t,—q = Op(nl/?).

The stochastic order of the least squares estimator of @ in (2.2) is not
affected by the presence of Z; nor by the stochastic order of it, although
the asymptotic distribution of & is affected by the presence of Z,. Because
of the divergent ¢ statistics, spurious relation occurs between Y; and Z;, and
between Y; and X; if o = 0. The results in Lemma 2 can be easily extended
to cases where two or more variables which are independent of the X; and N,
are included as “adjustment” variables.
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3. SEASONALLY INTEGRATED PROCESSES

We consider the following seasonally integrated process with period s.
(1 — B%)Y; = ¢y, (3.1)

where the ¢, are independent random variables with E(e;) = 0, Var(e;) = o2,
and sup:E(|ef|**®) < oo. If starting values of Y; contain a strong seasonality,
a realization may be consistently repetitive. In such cases one may use sea-
sonal indicator variables or another seasonal time series X; to account for the
seasonal behavior. Here we assume X, is generated from

Xt = Xt—s + ey (32)

and the e; are independent and satisfy the same moment conditions as the ;.
Also the e; and the ¢; are independent, and thus X; and Y; are independent.
Therefore, for Y;, t = 1,...,n (and n = sm for brevity), one may consider
the following models:

Y; = Z Bdje + Ny, (3.3)
j=1
Yt = Z ,Bjdjt + ’)’t -+ Nt (34)
j=1

Y, = aX; + Ny, (3.5)
Y; = Z ,Bj(s]'t + CYXt + Nt, (36)

i=1
Yy =Y Bibj + vt +aX + Ny, (3.7)

j=1

where §;; = 1 if j =t (mod s) or 0 otherwise. All the models are totally mis-
specified for Y;. Model (3.4) applies to a case where Y; is detrended compared
with model (3.3). Compared with model (3.5), model (3.6) applies to a case
where Y; and X, are deseasonalized and model (3.7) to a case where Y; and
X, are detrended and deseasonalized.

For these totally misspecified regression models we summarize asymptotic
properties of the estimators and other related regression statistics frequently
used in the following theorem.
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Theorem 1. If the regression models in (3.3) through (3.7) are fitted by the
least squares method for Y; generated from (3.1), then as n — oo, Bj diverges
for 5 =1, ..., s, the regression ¢ statistic for testing 3; = 0 diverges, 4
converges to zero in probability, the regression ¢ statistic for testing v = 0
diverges, & converges to a non-degenerate limiting distribution, the regression
t statistic for testing a = 0 diverges, the mean squared error 62 diverges, and
the R? converges to a non-degenerate limiting distribution.

Proofs of this theorem is based on Lemmas 1 and 2, and can be easily es-
tablished by noting the orders of the dependent variable ¥; and the predictor
variables. Thus details are omitted. The explicit asymptotic results of this
theorem can be found in the technical appendix. Although the ¢, and the e,
are assumed to be independent, the results of this and the following theorems
can be easily extended to a case where the ¢; and the e; are weakly station-
ary processes. In all models a spurious relationship between Y; and each of
the predictor variables occurs mainly because of the divergent regression ¢
statistics. The §3; are inconsistent, and because of the divergent B;'s and the
corresponding t statistic, one may incorrectly conclude that the process has
a deterministic seasonal component. For models (3.4) and (3.7) ¥ is the only
consistent estimator. However, because of the divergent ¢ statistic one may
reject the null hypothesis of v = 0, and incorrectly conclude that there is a
linear trend in the process. Because of the divergent ¢ statistics for testing
a = 0 one incorrectly conclude that X, is related to Y;.

As in the technical appendix, these t-statistics, when properly standard-
ized, have limiting distributions. For example, the regression t-statistics for
testing @ = 0 need to be multiplied by n~/2, and then compared with per-
centiles of the corresponding limiting distribution. Because these limiting dis-
tributions are non-standard in the sense that they are functional of stochastic
integrals of Brownian motions, percentiles are usually generated by a Monte
Carlo simulation.

When models (3.5), (3.6), and (3.7) are compared, deseasonalization or
detrending does not correct the spurious regression relation between Y; and
X:. When models (3.3), (3.4), (3.6), and (3.7) are compared, introducing a
statistically independent seasonal process as a predictor does not correct the
spurious regression relation between Y; and deterministic predictors such a
seasonal indicator variables and a linear time trend. For s = 1, that is, for
(regularly) integrated processes, some of the results in this theorem are iden-
tical to some of the results in Theorem 1 of Phillips (1986) and in Theorems
2.1 and 2.2 of Durlauf and Phillips (1988).
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4. REGULARLY AND SEASONALLY INTEGRATED
PROCESSES

Time series that are both regularly and seasonally integrated are found to
be useful to model variety of seasonal time series. Examples include the airline
data of Series G in Box, Jenkins, and Reinsel (1994) and the employment data
of Series W9 of Wei (1989). Therefore, we consider the following regularly
and seasonally integrated process with period s.

(1- B)(1 - B*)Y, =¢, (4.1)

For Y, in (4.1) one may consider regression models in (3.3) through (3.7). Here
we assume X, is also a regularly and seasonally integrated process generated
from

(1— B)1-B)X, =e,. (4.2)

These ¢; and e, satisfy the conditions stated in (3.1) and (3.2). Then, by
noting Y; = O,(t%/2), we have the following results.

Theorem 2. If the regression models in (3.3) through (3.7) are fitted by the
least squares method for Y; generated from (4.1) and X; from (4.2), then as
n — 00, the results stated in Theorem 1 hold except 4 now diverges. If,
instead, X, generated from (3.2) is used, then & diverges.

Proofs of this theorem is also based on Lemmas 1 and 2, and can be
easily established by noting the orders of the dependent variable Y and the
predictor variables. Thus details are omitted. The explicit asymptotic results
of this theorem can be found in the technical appendix. Unlike the results in
Theorem 1, 4 is no longer consistent. This is because the dependent variable
Y, in (4.1) is O,(t*/?) while the predictor variable ¢ is O(t). In all models
considered, spurious regression relations occur. It is noted that & diverges
if a seasonally integrated process X; generated from (3.2) is used instead of
(4.2). This is because X, in (3.2) is of lower order than Y; in (4.1).

5. PARTIALLY COINTEGRATED SEASONAL PROCESSES

For two seasonally integrated processes

Xie=Xi_s+e and Y=Y, +ey,
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we consider cases where X; and Y; are cointegrated at some of but not all
of the frequencies corresponding to the roots of 1 — B* = 0. For such cases
we call X, and Y; are partially cointegrated seasonal processes. For partially
cointegrated seasonal processes one may also consider least squares regression
of Y; on X; as in (3.5), (3.6), or (3.7). Unlike the previously considered case
where e; and ¢, are independent, for partially cointegrated X; and Y; models
in (3.5), (3.6), and (3.7) are not totally misspecified because, as will be shown
later in detail, a # 0 and NV, is nonstationary. Therefore, models (3.5), (3.6)
and (3.7) are partially misspecified. To be specific, in much of the following
discussions emphasis will be placed on the situation of quarterly seasonal time
series so that s = 4. Then the possible nonstationary roots are 1, —1, and =+
which correspond to frequencies zero, 1/2, and 1/4, respectively. For more
about seasonal cointegration refer to Hylleberg et al.(1990), Lee (1992), and
Ahn and Reinsel (1994).

When X; and Y; are cointegrated at frequency zero, then according to
the definition of Hylleberg et al. (1990) there exist a constant o # 0 such
that Y; — aX; dose not have a root of one, which is called a unit root, in its
autoregressive (AR) representation. That is,

(14 B)(1+ B*Y; = a(1 + B)(1 + B?) X, + u,, (5.1)

where u, is a stationary processes and the partial sum process S; = ¥} u; is
assumed to satisfy a functional central limit theorem of the type, for example,
discussed and applied in Phillips (1987). Then (5.1) can be rewritten as in
(3.5) with N; satisfying (1 + B)(1 + B*)N; = u. Since a # 0 and N; is
nonstationary, model (3.5) is partially misspecified for X; and Y; in (5.1).
When X; and Y; are cointegrated at frequency 1/2, there exist a constant

a such that Y; — aX; dose not have a root of —1 in its AR representation.
That is,

(1 - B)(1+ B*Y; = a(1 — B)(1 + B)X; + u;.
Then, this can be rewritten as in (3.5) with N, satisfying (1— B)(1+B?)N; =
u;. Model (3.5) is also partially misspecified for X, and Y; cointegrated at
frequency 1/2.
When X; and Y; are cointegrated at frequency 1/4, there are two possible
cases: in one case a cointegrating combination is a contemporaneous linear
combination and in the other case a cointegrating combination includes a

lagged variable. In the first case there exists a constant a such that Y; — aX;
does not have roots of +7 in its AR representation. That is,

(1 — BYY, = a(1 — B>)X; + u;.
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Then, this can be rewritten as in (3.5) with N; satisfying (1 — B*)Ny = uy,
and model (3.5) is partially misspecified.

In the other case, there exist @ and oy such that Y; — aX; — a; X;_; does
not have roots of &4 in its AR representation, that is,

(1- B?Y, = (1 - B*)(aX,+ a1 X;1) + u. (5.2)

This corresponds to the case where polynomial cointegrating vectors (PCIV’s)
exit, see Hylleberg et al. (1990). Then (5.2) can be rewritten as in (3.5) with
N, satisfying (1 — B%)N; = (1 — B*)oy X1 + u;. Model (3.5) is misspecified
for X, and Y; which are cointegrated at frequency 1/4 with a PCIV. We note
that in this case a linear combination Y; + oy X;1; — aX; does not have roots
of +i in its AR representation, either; see pages 322 and 326 of Ahn and
Reinsel (1994). This linear combination yields a partially misspecified model
with NV, in (3.5) satisfying (1 — B?)N; = —(1 — B*)a; X;41 + u;. Therefore, in
model (3.5) the “noise term” NV, is not well defined, although the parameter
o is identifiable.

When X, and Y; are partially cointegrated at two of the frequencies corre-
sponding to the nonstationary roots with one cointegrating vector, by similar
arguments we can easily establish that regression model of Y; on X; is par-
tially misspecified and the orders of X; and N, are the same. For example,
when X, and Y; are cointegrated at frequencies zero and 1/4 with a PCIV,
there exist a linear combination Y; — oX; — a3 X;_; which does not have roots
of 1 and +:¢ in its AR representation, that is,

(1 + B)(},t - aXt - a1Xt_1) = Us.

This can be rewritten as in (3.5) with N; satisfying (1 + B)N; = (1 +
B)a1Xt_1 + ug.

In all cases of partially cointegrated seasonal processes discussed above,
X, and N, are all O,(t'/2). Therefore, Lemma 1 is directly applicable when
least squares regression model (3.5) is considered, and Lemma 2 is applicable
when (3.6) and (3.7) are considered because 3; = 0 for all j and v = 0. We
have the following results.

Theorem 3. If least squares regression models (3.5), (3.6) and (3.7) are fitted
and X, and Y; are partially cointegrated, then as n — oo, & — a converges to
a non-degenerate limiting distribution, the regression t statistic for testing o
diverges, B;‘ diverges for j = 1, ..., s, the regression ¢ statistic for testing
B; = 0 diverges, 4 converges to zero in probability, the regression t statistic
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for testing v = 0 diverges, the mean squared error 62 diverges, and the R2
converges to a non-degenerate limiting distribution.

The limiting distributions are different for different cointegrated cases and
are explicitly given in the technical appendix. Similar to the case where X,
and Y; are independent the least squares estimator & is inconsistent for o
and thus for the cointegrating vector (1, —a)’. This is because whether X,
and Y; are independent or partially cointegrated the orders of X, and N, are
the same. If X; and Y; are cointegrated at two different frequencies with
linearly independent cointegrating vectors, then the parameter o in (3.5) is
not identifiable. For example if X; and Y; are cointegrated at frequency zero

with a cointegrating vector (1, — o) and at frequencies 1/2 and 1/4 with a
cointegrating vector (1, — a;) with ap # o4, then
Y: = ap X, + N?, (5.3)
Y, = a1 X; + N, (5.4)

where (1+ B)(1+4 B?)N) = v, (1 — B)N} = ul, u{ is the u, satisfying (5.1),
and uy satisfies (1 — B)Y; = a;(1 — B)X; + u}. In order to properly estimate
such ag and a; one may use generalized least squares estimation with the
filtered series. For example regress (14 B)(1+ B?)Y; on (1+ B)(1+ B?)X, to
estimate o and regress (1— B)Y; on (1 — B)X; to estimate a;. However, with
filtered series information on the long run relationship between the levels of X,
and Y; is lost. As conitegration is concerned with the long run relationship
among the levels of the series involved, estimation of cointegrating vectors
with unfiltered series is desirable. For an extensive discussion of estimation of

seasonal cointegrating vectors with unfiltered series, refer to Ahn and Reinsel
(1994).

6. A NUMERICAL EXAMPLE

To illustrate some of the consequences of partial misspecification of non-
stationary seasonal time series model, we consider quarterly United Kingdom
data on the logarithm of consumption expenditure (Y;) and the logarithm of
personal disposable income (X;) for the period 1955 through 1979. The data
are extensively analyzed in Ahn and Reinsel (1994) for modeling procedures
for seasonal nonstationary vector AR models. The scatter plot of Y; and X,
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Piot of the Quarterly United Kingdom Data
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Figure 1 Scatter Plot of the Quarterly United Kingdom Data on the Loga-
rithm of Consumption Expenditure (EXPEND) and the logarithm of Personal
Disposable Income (INCOME) for the Period 1955 through 1979.

in Figure 1 shows strong linear relationship between the two variables, and
one may consider a simplt linear regression model for the data. When the
regression model (3.5) is fitted with a constant term, we obtain & = 0.86090
with “standard error” 0.01429 and R? = 0.974. But the residuals show a
strong seasonality, which indicates the error term in the regression model is
nonstationary and thus indicates a partially misspecified model. Ahn and
Reinsel (1994) obtained that X; and Y; are cointegrated at frequency zero
with a cointegrating vector (1, — 0.8649) and at frequencies 1/2 and 1/4
with a cointegrating vector (1, — 2.7310). That is, Y; — 0.8649.X, does not
have a unit root and Y; — 2.7310X; does not have nonstationary roots of —1
and +i. The estimates of the cointegrating vectors were obtained by Gaussian
reduced rank (GRR) estimation. Therefore, for the data the regression model
in (3.5) is misspecified. Further, the parameter o is not identifiable because
X; and Y; are cointegrated at different frequencies with linearly independent
cointegrating vectors.

Even though the parameter ¢ is not identifiable, the least squares (LS)
estimate of « is very close to the GRR estimate of the cointegrating vector at
frequency zero. That is, in this example the LS estimator closely estimates
the value of a corresponding to frequency zero, that is, g in (5.3), but not
the value corresponding to frequencies 1/2 and 1/4, that is, oy in (5.4). This
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is because the least squares estimate minimizes the residual sum of squares
and for the data the sample variance of Y; — 0.8649.X; is smaller than that of
Y; — 2.7310.X;.

TECHNICAL APPENDIX

In this appendix we provide a proof of Lemma 1 and explicit forms of the
limiting distributions of the various estimators and test statistics appeared in
the text.

Al. Proof of Lemma 1:
Since (a,‘,IX[,,,], b Ninu)) converges in distribution to (f(r), g(u)), (n~la; b3} > XinrNinrn=t

e’y X[zml) converges in distribution to (fol F(r)g(r)dr, fol f(r)2dr) by similar arguments used in (A.1)
of Phillips (1986). Therefore,

an 3 XiNe p [ 1(r)g(r)dr

(&)= =¢

bn bn 3 XP NG
From N; = Ny — (& — a)X; it follows immediately

b7 Ninp) 3 glr) — ££(r)-
Since 2 = Eﬁ[znr]/(n —1),
1
b2 5 / {o(r) - £5(r)Y2dr = ¢.
0
Since ta=a, = (& — a0)/(6%/ Y X2)1/2,
1 2
12,  _ (an/bn){& — ao) D fo f(r)*dr 1/2
e S et xS0 ¢ )

under the null hypothesis a = ag.
To prove the asymptotic properties of R?, we first need the asymptotic properties of Y; for each of
the cases because -
R2 =1- Z Nt

XY
involves Y;. f @ = 0 or if @ # 0 and a, /b, — 0, then b,TlY[m] 2z g(r). If a # 0 and an /b, — ¢, then

a;l}’[m] L2 af(r) + g(r)/c. Finally if a # 0 and an /by, — o0, then a,',lY[,,r] 2 af(r). Now, the results
follow by simple arithmetic. For example, if a # 0 and a, /bn — ¢,

n~1672 Y N2p2
n-la;? STY - t2a2
1 ¢
- = .
[ {acf(r) + g(r)}2ar

R} = 1

1o
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A2. Explicit formulae for limiting distribution:

Most of the limiting distributions involve simple functionals of Brownian motions. They are obatined
using an approach similar to that in Li (1991), Ahn and Cho (1993), and Park and Cho(1995) for seasonal
models. The approach essentially makes use of invariance principles, also known as functional central limit
theorem, and is explored in detail in Phillips (1986, 1987) for nonseasonal models. Basically, the statistics
in the text are functions of quantities whose limiting behavior can be found in the aforementioned articles,
and the limiting distributions of the statistics follow by the continuous mapping theorem.

A2.1. Formulae for Theorem 1:

A2.1.1. Formulae for model (3.3):

n~1/23 B 3_1/2/Wj(7')d7' = f{l
— D j
n 1/2tﬁ=0 - {1/(-9(11)1/2
n-1s? 2)

’_22{/ Wf(')zdf—(/ W;(r)dr)’} = ¢u
= ¢

- S e
Ej fO Wj(T)sz

2

RE)

where W;(r) is a Brownian motion as a limiting distribution of the partial sum process Zk E(k—1)s+]
corresponding to the j-th season and ¢ is as defined in (3.1).

A2.1.2. Formulae for model (3.4):

n‘l/zﬁj B 3_1/2/Wj(r)dr—63‘5/22/"“’1'(')‘17‘
J

+38_3/22/Wj(r)dr = f{z
J

D .
nV3%_0 S €, /(s12)Y?
n'/25 5 128_5/2Z/TWj(T)dT-—68-3/22/Wj(7‘)d1‘ = {13
3 J
_ D
Y%, S f13/(12612)"2
n~15% 2}

52 Z / W;(r)2dr —s72 Z(/ W;(r)dr)?
j i=1
—12{3_5/2Z/er(T)dr— %s‘a/ZZ/Wj(r)dr}z = (12
J J

1 €12

T sy [Win2dr — =33 [ W;(r)dr)?

o

R2
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A2.1.3. Formulae for model (3.5):

p 2 fy Wilr)Vi(r)dr

CT S e
1o (o2
n_1/2ta=0 2} 3_1/2514{21' foCIV:(r) dr}1/2
1
. W,(r)V;(r)dr)?
n~ts2 B s‘zz/Wj(r)zdr— (EJ fo 1,(1') (r)dr) = (13
i 25 Jo vitry2ar
R B 13

B WO
EJ’ fo Wj(r)zdr

where Vj(r) is a Brownian motion as a limiting distribution of the partial sum process
Yk €(k—1)s+; corresponding to the j-th season and e; is as defined in (3.2).

A2.1.4. Formulae for model (3.6):

n-125, 8 s‘l/z/W,-(r)dr—Elea_l/z/Vj(r)dr = ¢,
n~2t5. 20 3 15/(s¢14)*/?
s 8 L/ Widr -5, J Wiy [ Virldr .
Y, [Vi)rdr — 3 ([ Vi(rdr)? -
ﬂ“l/ztc::o 2} 3“3/2616{ ZJ f Vj(r)zdr }1/2
C14 ,
n-152 B .s"zz:‘/.sz(r')dr—-.s_2 Z('/‘W_,-(r)dr)2
i i=1
_E W) - 8, [ Witndr [ Vinar?
Y, JViryar =5 ([ Vi(r)dr)2 - o
R B $14

- s? Zj f Wi(r)dr — ,—S(Zj ij(r)dr)3

A2.1.5. Formulae for model (3.7):

s
—125. B _ 1 - = ¢
n~Y28;, 3 1/2/Wj(r)dr+m2{cij’ 1/2/Wi(")d"} = &,
i=1
- D j
n~ V5.0 5 Ely/(sC1s)"?
. D
a =5

(ad — b?)~ - Zg,-rs/“(/ W;(r)dr) — b/rW(r)dr
J

+a/W(r)V(r)d1‘] = &Lis
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ZJ‘ f Vj(r)2dr }1/2

— D —
n l/zta=0 - 8 lfls{

Cis
nl/24 A (ad—bz)—l[z,fjs'a/z(/ Wj(r)dr)+d/'rW(r)dr
J
- b/W(r)V(r)dr] = 10
n~Y20 B t1e/(6015)"?
n~ls? 3B s_zz/Wj(r)zdr—-s“zz(/ W;(r)dr)?

2 2
- (ad—bz)_l{ZZcijs“a/W.-(r)dr/Wj(r)dr
i
+2ijs’3/2/Wj(r)dr/rV(r)dr
j
+ 2Zgjs‘3/2/Wj(r)dr/W(r)V(r)dr+d(/rW(r)dr)2
j

- Zb(/ rW(r)dr)/W(r)V(r)dr+a(/ W(r)V(r)dr)z}
(15

1 C1s

T ey [Wi)2dr — =33 [ Wilr)dr)?

Jo

R2

where

a = 1/12

b = /rV(r)dr— -;—s‘l/zz/‘/j(r)dr
i
d = /V(r)zdr —.s—ZZ(/V,-(r)atr)2

J
fi = -—%d+bs“1/2/Vj(r)dr

1
9; = Eb—aa“l/2 Vi(r)dr

-3/2
cij = —-‘lidi-b“I 2 /Vj(r)dr+as'2/‘/;(r)dr/1/}(r)dr
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A2.2. Formulae of Theorem 2:

A2.2.1 Formulae for model (3.3):

1 7 ry
- Py D — ;
n 3/2ﬁj = s 3/2/ Z/ Wi(r1)dridrz = €,
0 1]

i=1

- D 1
n 1/2tﬂj=0 - 551/(3421)1/2

3 1 7 ro
n%? 3 sy / » / Wi(r1)dr1)?dra
j=1Y0 =170
3 1 J re
_Z(/ Z/ W,'(rl)drldrg)z] = (21
j=1 70 =1 Y0

4

rR* 51 Ca1

- 1 i 1 j
s—4 Z;=1 0N o Wi(ri)dr1)?drs — 8‘5(Z;=1 Jo 30, Jo? Wilr1)dridrz)?

A2.2.2. Formulae for model (6):

13 T2
n—3/2ﬁj E) 3_3/2/ z/ W.-(r1)dr1drg
0 =1 Y
3 1 J r2
—63_5/22/ 1‘22/ W.-(rl)dudrg
0 i=1Y0

j=1

13 ra
+38_5/2/ Z/ W,-(rl)drldrz = fgz
[} 0

=1

-— D ]
n 1/2tgj=o - ﬁz/(’(”)l/z

3 1 J ra
n_l/z"y —D-> 123_7/22/ ra Z/ Wi(r1)dridra
j=1Y0 i=1 Y0
1 3 ro
-—63_5/2/ Z/ Wi(ri)dridra = €23
0 ;=1 YO

L D
V3% 0 S €23/(12(22)"/?

3
o

s 1 J r2 i 1 J rz
3-4[2/ (Z/ Wg(rl)drl)zdrz—Z(/ Z/ Wi(r1)drdr2)?)
j=1v0 =170 j=1 Y0 ;=1 VO
3 1 j ra 1 13 ro
—12[0_7/22/ 1‘22/ Wi(r1)dridrs — 53_5/2/ Z/ Wi(r1)dridrs)?
j=1"0 i=1 70 0 ;= Y0
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2 D (22
R°=1- ._4 r2 2 5 .9 1 7 re 2
21_1 fo (E._1 0 Wi(r1)dr1)?drz — 8= j=1 fo izt o Wi (r1)dridra)

A2.2.8. Formulae for model (3.5):

= fol(z f Vi(ri)dr1) (z frzw (r1)dr1)drs
Z fo (z*—l or2 Vi(r1)dry)2drs
Z’ f" (ZL or2 Vi(r1)dr1)2drs yi/2
C23

= 24

f=23

%0 S 8726

1 3 ro
n—352 B) 3_42/ (Z W;(rl)drl)zdrz
J
U, f 2 VJ r1)dr1) 3, Jy? Wilri)dri)dra)?
2 fo i, o2 Vi(r1)dr1)2dra
= (23
R 3 (23

_42 fo (Z'_l 2 W, r1)dr1)2dr2 - 8_5(2 fO i=1 07‘2 W,(rl)drldr2)2

A2.2.4. Formulae for model (3.6):

13 ra
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1 T2 1 ro
—Z(/ Z/ Vi(rl)drldrz)(/ Z/ W;(r1)dridrs)]?
i ve v o ;Yo
13 ra 107 ra
[Z/ (Z/ Vt'("l)drl)zd7’2-—2(/ Z/ V;(r1)dridrz)?]
i 70 =0 j Y0 i=1Y0

= (24

R? 2) C24
‘42 fo (E, -1 O' r1)dr1)2dr2—s—5(z fo . 0'2 Wi(ry)dridrz)?

A2.2.5. Formulae for model (3.7):
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/ / Wi ( Tl)dr1d1'2/ / Wi (r1)dridrs
0 k=1 0 k=1
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A2.3. Formulae of Theorem 3:

R
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k=1
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For each of the partially contegrated cases, we first need to express V; in terms of u¢. For example, if
X: and Y; are cointegrated at frequency zero, then

(/4] [t/4]
Ny = Z Ut gp — Zut—1—4k-
k=1 k=1

Let U;(r) be a Brownian motion as a limiting distribution of the partial sum process zk U(k_1)s+j
correspondmg to the j-th season and u; is as defined in (12). Then,

-1 D
1Y 3Np, S s VU (r) - Uj— iy (r).

As the formulae for Theorem 3 are algebraically involved, here we present the foremulae for the
partially cointegrated case at frequency zero only. The formulae for the other cases can be obtained from
the authors upon request.

A2.8.1. Formulae for model (3.5):

3, o Vi) Us(r) = Us_a(r))dr

a-ap 3 = {m
¥ Jo vie)
nVamay B ) / Vi(r)?dr}/ %631 /(5% a1)"/?
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J J
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J j

A2.3.2. Formaulae for model (3.6):
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J
Ejfv,- r)2dr — Ej(f Vj(r)dr)?
£32

{Z/Vj(")}llzﬁsz/(azcsz)m
i

lo

&—ap

Jo



88 Sung K. Ahn, Young J. Park and Sinsup Cho

n-1/2p; B _1/2(/U'(7‘)—UJ‘ 1(r))dr
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A2.3.3. Formulae for model (3.7):
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—(ad — b2)~1{ZZC.Js 3/0 Ui(r) — Ui_l(r)dr)(/(llUj(r)—U]-_1(r)dr)
+2Zfs 3/2(/ ~ Uj_a( dr)/rV(r)dr
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+aly /0 030) = Uy )
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7
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Lo

where a,b,d,cij,f; and g; are defined in A2.1.5.
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