• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.037 seconds

Performance Comparison of Estimation Methods for Dynamic Conditional Correlation (DCC 모형에서 동태적 상관계수 추정법의 효율성 비교)

  • Lee, Jiho;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.1013-1024
    • /
    • 2015
  • We compare the performance of two representative estimation methods for the dynamic conditional correlation (DCC) GARCH model. The first method is the pairwise estimation which exploits partial information from the paired series, irrespective to the time series dimension. The second is the multi-dimensional estimation that uses full information of the time series. As a simulation for the comparison, we generate a multivariate time series similar to those observed in real markets and construct a DCC GARCH model. As an empirical example, we constitute various portfolios using real KOSPI 200 sector indices and estimate volatility and VaR of the portfolios. Through the estimated dynamic correlations from the simulation and the estimated volatility and value at risk (VaR) of the portfolios, we evaluate the performance of the estimations. We observe that the multi-dimensional estimation tends to be superior to pairwise estimation; in addition, relatively-uncorrelated series can improve the performance of the multi-dimensional estimation.

The Prediction of Industrial Accident Rate in Korea: A Time Series Analysis (시계열분석을 통한 산업재해율 예측)

  • Choi, Eunsuk;Jeon, Gyeong-Suk;Lee, Won Kee;Kim, Young Sun
    • Korean Journal of Occupational Health Nursing
    • /
    • v.25 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • Purpose: The purpose of this study is to predict industrial accident rate using time series analysis. Methods: The rates of industrial accident and occupational injury death were analyzed using industrial accident statistics analysis system of the Korea Occupational Safety and Health Agency from 2001 to 2014. Time series analysis was done using the most recent data, such as raw materials of Economically Active Population Survey, Economic Statistics System of the Bank of Korea, and e-National indicators. The best-fit model with time series analysis to predict occupational injury was developed by identifying predictors when the value of Akaike Information Criteria was the lowest point. Variables into the model were selected through a series of expertises' consultations and literature review, which consisted of socioeconomic structure, labor force structure, working conditions, and occupational accidents. Results: Indexes at the meso- and macro-levels predicting well occurrence of occupational accidents and occupational injury death were labor force participation rate for ages 45-49 and budget for small scaled workplace support. The rates of industrial accident and occupational injury death are expected to decline. Conclusion: For reducing industrial accident continuously, we call for safe employment policy of economically active middle aged adults and support for improving safety work environment of small sized workplace.

Estimating groundwater recharge from time series measurements of subsurface temperature

  • Koo, Min-Ho;Kim, Yongje
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.213-216
    • /
    • 2003
  • Efforts for better understanding of the interaction between groundwater recharge and thermal regime of the subsurface medium is gaining momentum for its diverse applications in water resources. A numerical model is developed to simulate temperature variations of the subsurface under time varying groundwater recharge. The model utilizes MacCormack scheme for finite difference approximation of the partial differential equation describing the conductive and advective heat transport. For the estimation of recharge rate, optimization of the model is realized by searching for the unknown parameters which minimize the root-mean-square error between simulated and measured temperatures. Simulation results for 22-year time series data of temperature measurements reveal that the proposed model can accurately simulate subsurface temperature variations resulting from the redistribution of the heat due to the movement of water and it can also estimate temporal variations of recharge. Seasonal variations of recharge and a linear relationship between precipitation and recharge are clearly reflected in the simulated results.

  • PDF

Estimation Model of Wind speed Based on Time series Analysis (시계열 자료 분석기법에 의한 풍속 예측 연구)

  • Kim, Keon-Hoon;Jung, Young-Seok;Ju, Young-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.288-293
    • /
    • 2008
  • A predictive model of wind speed in the wind farm has very important meanings. This paper presents an estimation model of wind speed based on time series analysis using the observed wind data at Hangyeong Wind Farm in Jeju island, and verification of the predictive model. In case of Hangyeong Wind Farm and Haengwon Wind Farm, The ARIMA(Autoregressive Integrated Moving Average) predictive model was appropriate, and the wind speed estimation model was developed by means of parametric estimation using Maximum likelihood Estimation.

  • PDF

Studies on the Stochastic Generation of Synthetic Streamflow Sequences(I) -On the Simulation Models of Streamflow- (하천유량의 추계학적 모의발생에 관한 연구(I) -하천유량의 Simulation 모델에 대하여-)

  • 이순탁
    • Water for future
    • /
    • v.7 no.1
    • /
    • pp.71-77
    • /
    • 1974
  • This paper reviews several different single site generation models for further development of a model for generating the Synthetic sequences of streamflow in the continuous streams like main streams in Korea. Initially the historical time series is looked using a time series technique, that is correlograms, to determine whether a lag one Markov model will satisfactorily represent the historical data. The single site models which were examined include an empirical model using the historical probability distribution of the random component, the linear autoregressive model(Markov model, or Thomas-Fiering model) using both logarithms of the data and Matala's log-normal transformation equations, and finally gamma distribution model.

  • PDF

Relationships Between the Characteristics of the Business Data Set and Forecasting Accuracy of Prediction models (시계열 데이터의 성격과 예측 모델의 예측력에 관한 연구)

  • 이원하;최종욱
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.133-147
    • /
    • 1998
  • Recently, many researchers have been involved in finding deterministic equations which can accurately predict future event, based on chaotic theory, or fractal theory. The theory says that some events which seem very random but internally deterministic can be accurately predicted by fractal equations. In contrast to the conventional methods, such as AR model, MA, model, or ARIMA model, the fractal equation attempts to discover a deterministic order inherent in time series data set. In discovering deterministic order, researchers have found that neural networks are much more effective than the conventional statistical models. Even though prediction accuracy of the network can be different depending on the topological structure and modification of the algorithms, many researchers asserted that the neural network systems outperforms other systems, because of non-linear behaviour of the network models, mechanisms of massive parallel processing, generalization capability based on adaptive learning. However, recent survey shows that prediction accuracy of the forecasting models can be determined by the model structure and data structures. In the experiments based on actual economic data sets, it was found that the prediction accuracy of the neural network model is similar to the performance level of the conventional forecasting model. Especially, for the data set which is deterministically chaotic, the AR model, a conventional statistical model, was not significantly different from the MLP model, a neural network model. This result shows that the forecasting model. This result shows that the forecasting model a, pp.opriate to a prediction task should be selected based on characteristics of the time series data set. Analysis of the characteristics of the data set was performed by fractal analysis, measurement of Hurst index, and measurement of Lyapunov exponents. As a conclusion, a significant difference was not found in forecasting future events for the time series data which is deterministically chaotic, between a conventional forecasting model and a typical neural network model.

  • PDF

The Effect of Series and Shunt Redundancy on Power Semiconductor Reliability

  • Nozadian, Mohsen Hasan Babayi;Zarbil, Mohammad Shadnam;Abapour, Mehdi
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1426-1437
    • /
    • 2016
  • In different industrial and mission oriented applications, redundant or standby semiconductor systems can be implemented to improve the reliability of power electronics equipment. The proper structure for implementation can be one of the redundant or standby structures for series or parallel switches. This selection is determined according to the type and failure rate of the fault. In this paper, the reliability and the mean time to failure (MTTF) for each of the series and parallel configurations in two redundant and standby structures of semiconductor switches have been studied based on different failure rates. The Markov model is used for reliability and MTTF equation acquisitions. According to the different values for the reliability of the series and parallel structures during SC and OC faults, a comprehensive comparison between each of the series and parallel structures for different failure rates will be made. According to the type of fault and the structure of the switches, the reliability of the switches in the redundant structure is higher than that in the other structures. Furthermore, the performance of the proposed series and parallel structures of switches during SC and OC faults, results in an improvement in the reliability of the boost dc/dc converter. These studies aid in choosing a configuration to improve the reliability of power electronics equipment depending on the specifications of the implemented devices.

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models

  • Lee, Young-Chan
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.11a
    • /
    • pp.36-44
    • /
    • 2000
  • The purpose of this study is to introduce a more efficient forecasting technique, which could help result the reduction of cost in removing the waste of airline in-flight meals. We will use a neural network approach known to many researchers as the “Outstanding Forecasting Technique”. We employed a multi-layer perceptron neural network using a backpropagation algorithm. We also suggested using other related information to improve the forecasting performances of neural networks. We divided the data into three sets, which are training data set, cross validation data set, and test data set. Time lag variables are still employed in our model according to the general view of time series forecasting. We measured the accuracy of our model by “Mean Square Error”(MSE). The suggested model proved most excellent in serving economy class in-flight meals. Forecasting the exact amount of meals needed for each airline could reduce the waste of meals and therefore, lead to the reduction of cost. Better yet, it could enhance the cost competition of each airline, keep the schedules on time, and lead to better service.

  • PDF

An Empirical Study on the Consumption Function of Korean Natural Gas for City Gas - Using Time Varying Coefficient Time Series Model - (한국 도시가스용 천연가스의 소비함수에 대한 실증분석 - 시간변동계수(TVC) 시계열모형 활용 -)

  • Kim, Jum-Su;Yang, Chun-Seung;Park, Jung-Gu
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.318-329
    • /
    • 2011
  • This study focuses on enhancing the accuracy of consumption function of Korean natural gas for city gas. It is using time-series model with time-varying coefficients taking into account the recent abnormal temperature phenomenon and the changing gross domestic product (GDP) as important variables. This study estimates the cointegrating regression model for the long-run estimation and the error correction model for the short-run estimation. The consumption function of Korean natural gas is estimated to be influenced by the time-varying coefficients of GDP and temperature. Using the estimated time-series model with time-varying coefficients, this study forecasts the consumption of natural gas for city gas from July 2011 to December 2012. The consumption in 2011 would be 18,303 thousand tons, which is little different from the imported 18,681 thousand tons. The consumption of natural gas for city gas in 2012 is forecast to be 19,213 thousand tons. The consumption model of this study is needed to extend by considering the relative prices between natural gas and its substitutes, the scale of consumers and others.

Time-Series Causality Analysis using VAR and Graph Theory: The Case of U.S. Soybean Markets (VAR와 그래프이론을 이용한 시계열의 인과성 분석 -미국 대두 가격 사례분석-)

  • Park, Hojeong;Yun, Won-Cheol
    • Environmental and Resource Economics Review
    • /
    • v.12 no.4
    • /
    • pp.687-708
    • /
    • 2003
  • The purpose of this paper is to introduce time-series causality analysis by combining time-series technique with graph theory. Vector autoregressive (VAR) models can provide reasonable interpretation only when the contemporaneous variables stand in a well-defined causal order. We show that how graph theory can be applied to search for the causal structure In VAR analysis. Using Maryland crop cash prices and CBOT futures price data, we estimate a VAR model with directed acyclic graph analysis. This expands our understanding the degree of interconnectivity between the employed time-series variables.

  • PDF