• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.038 seconds

Computation of the Time-domain Induced Polarization Response Based on Cole-Cole Model (Cole-Cole 모델에 대한 시간영역 유도분극 반응의 계산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.158-163
    • /
    • 2021
  • The frequency-domain induced polarization (IP) response based on Cole-Cole model is expressed as a simple equation in close form. However, it is difficult to compute the time-domain IP response based on Cole-Cole model or any other relaxation model because it cannot be written in closed form. In this study, using numerical experiments, we compared three numerical methods for calculating the time-domain IP response of the Cole-Cole model asymptotically: series expansion, digital linear filtering and Fourier transform. The series expansion method is inadequately accurate for certain time values and converges very slowly. A digital linear filter specially designed to calculate the time-domain IP response does not present the desired accuracy, especially at later times. The Fourier transform method can overcome the abovementioned problems and present the time-domain IP response with adequate accuracy for all time values, even though more computing time is required.

Time series analysis for the amount of medicine from the Korea Consumer Agency (한국 소비자원 의료분야 처리금액에 대한 시계열 분석)

  • Hee Song Kang;Sukhui Kwon;SungDuck Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • The amount of money processed in medicine from the Korea Consumer Agency was studied by the various time series models. The medical data set from the Korea Consumer Agency were consisted of counseling, damage relief and conciliation. For the analysis of time series, autoregressive moving average model, vector autoregressive model and the transfer function model were used. We considered the stationarity and cross correlation function for the identification and fitting. As a result, the transfer function model showed a better prediction. Whereas, the vector autoregressive model also provided good information for the degree and duration of the influence of variables.

Test for Structural Change in ARIMA Models

  • Lee, Sang-Yeol;Park, Si-Yun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.279-285
    • /
    • 2002
  • In this paper we consider the problem of testing for structural changes in ARIMA models based on a cusum test. In particular, the proposed test procedure is applicable to testing for a change of the status of time series from stationarity to nonstationarity or vice versa. The idea is to transform the time series via differencing to make stationary time series. We propose a graphical method to identify the correct order of differencing.

  • PDF

IGARCH 모형과 Stochastic Volatility 모형의 비교

  • Hwang, S.Y.;Park, J.A.
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.151-152
    • /
    • 2005
  • IGARCH and Stochastic Volatility Model(SVM, for short) have frequently provided useful approximations to the real aspects of financial time series. This article is concerned with modeling various Korean financial time series using both IGARCH and Stochastic Volatility Models. Daily data sets with sample period ranging from 2000 and 2004 including KOSPI, KOSDAQ and won-dollar exchange rate are comparatively analyzed using IGARCH and SVM.

  • PDF

IGARCH and Stochastic Volatility : Case Study

  • Hwang, S.Y.;Park, J.A.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.835-841
    • /
    • 2005
  • IGARCH and Stochastic Volatility Model(SVM, for short) have frequently provided useful approximations to the real aspects of financial time series. This article is concerned with modeling various Korean financial time series using both IGARCH and stochastic volatility models. Daily data sets with sample period ranging from 2000 and 2004 including KOSPI, KOSDAQ and won-dollar exchange rate are comparatively analyzed using IGARCH and SVM.

  • PDF

The Change Point Analysis in Time Series Models

  • Lee, Sang-Yeol
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.43-48
    • /
    • 2005
  • We consider the problem of testing for parameter changes in time series models based on a cusum test. Although the test procedure is well-established for the mean and variance in time series models, a general parameter case has not been discussed in the literature. Therefore, here we develop a cusum test for parameter change in a more general framework. As an example, we consider the change of the parameters in an RCA(1) model and that of the autocovariances of a linear process. We also consider the variance change test for unstable models with unit roots and GARCH models.

  • PDF

A Hybrid System of Joint Time-Frequency Filtering Methods and Neural Network Techniques for Foreign Exchange Rate Forecasting (환율예측을 위한 신호처리분석 및 인공신경망기법의 통합시스템 구축)

  • 신택수;한인구
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.103-123
    • /
    • 1999
  • Input filtering as a preprocessing method is so much crucial to get good performance in time series forecasting. There are a few preprocessing methods (i.e. ARMA outputs as time domain filters, and Fourier transform or wavelet transform as time-frequency domain filters) for handling time series. Specially, the time-frequency domain filters describe the fractal structure of financial markets better than the time domain filters due to theoretically additional frequency information. Therefore, we, first of all, try to describe and analyze specially some issues on the effectiveness of different filtering methods from viewpoint of the performance of a neural network based forecasting. And then we discuss about neural network model architecture issues, for example, what type of neural network learning architecture is selected for our time series forecasting, and what input size should be applied to a model. In this study an input selection problem is limited to a size selection of the lagged input variables. To solve this problem, we simulate on analyzing and comparing a few neural networks having different model architecture and also use an embedding dimension measure as chaotic time series analysis or nonlinear dynamic analysis to reduce the dimensionality (i.e. the size of time delayed input variables) of the models. Throughout our study, experiments for integration methods of joint time-frequency analysis and neural network techniques are applied to a case study of daily Korean won / U. S dollar exchange returns and finally we suggest an integration framework for future research from our experimental results.

  • PDF

Evaluation of Agricultural Drought Prevention Ability Based on EOF Analysis and Multi-variate Time Series Model (EOF 해석 및 다변량시계열 모형을 이용한 농업가뭄 대비능력의 평가)

  • Yoo Chul-Sang;Kim Dae-Ha;Kim Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.617-626
    • /
    • 2006
  • In this study 3-month SPI data from 59 stations over the Korean peninsula are analyzed by deriving and spatially characterizing the EOFs. Also, the coefficient time series of EOF are applied to the multi-variate time series model to generate the time series of 10,000 years, to average them to estimate the areal average, and to decide the maximum drought severity for given return periods. Finally, the drought prevention ability is evaluated by considering the effective storage of dam within the basin and the size of agricultural area. Especially for the return period of 30 years, only the Han river basin has the potential to overcome the drought. Other river basins like the Youngsan river basin, which has a large portion of agricultural area but less water storage, are found to be very vulnerable to the rainfall-sensitive agricultural drought.

Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes (지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

A Multi-step Time Series Forecasting Model for Mid-to-Long Term Agricultural Price Prediction

  • Jonghyun, Park;Yeong-Woo, Lim;Do Hyun, Lim;Yunsung, Choi;Hyunchul, Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.201-207
    • /
    • 2023
  • In this paper, we propose an optimal model for mid to long-term price prediction of agricultural products using LGBM, MLP, LSTM, and GRU to compare and analyze the three strategies of the Multi-Step Time Series. The proposed model is designed to find the optimal combination between the models by selecting methods from various angles. Prior agricultural product price prediction studies have mainly adopted traditional econometric models such as ARIMA and LSTM-type models. In contrast, agricultural product price prediction studies related to Multi-Step Time Series were minimal. In this study, the experiment was conducted by dividing it into two periods according to the degree of volatility of agricultural product prices. As a result of the mid-to-long-term price prediction of three strategies, namely direct, hybrid, and multiple outputs, the hybrid approach showed relatively superior performance. This study academically and practically contributes to mid-to-long term daily price prediction by proposing an effective alternative.