• Title/Summary/Keyword: Time-multiplexing

Search Result 557, Processing Time 0.022 seconds

Transport Overhead Analysis in Terrestrial UHD Broadcast A/V Stream (지상파 UHD 방송 AV 스트림 오버헤드 분석)

  • Kim, Nayeon;Bae, Byungjun
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.744-754
    • /
    • 2017
  • This paper compares transport overhead of MPEG-2 TS, MMT and ROUTE in order to compare transport efficiency between the DTV and UHDTV. The MPEG-2 TS standard, widely used, was established for multiplexing and synchronizing encoded audio and video, additional information. In recent years, MMT and ROUTE was established as a next generation multimedia transport standard for the new broadcasting communication environment. In this paper, we compare and analyze transport overhead about three protocol. In order to analysis, we captured the UHD A/V stream in real-time broadcasting service using ROUTE and MMT, and we calculated and analyzed transport overhead using the overhead analysis program which was developed in our laboratory. Furthermore, for comparison under the same conditions, we assumed the MPEG-2 TS stream by extracting ES of UHD A/V stream based on the DTV standard. In this paper, we show the results of protocol transport efficiency in case of basic A/V stream except for additional services. And result show that MMT and ROUTE have similar overhead and MPEG-2 TS is relatively small overhead. However, since MPEG-2 TS result does not consider null packets, it is expected that the relative overhead difference will be reduced.

Pilot Assignment Method for the PAPR Reduction and Effective Channel Estimation in the SC-FDMA Communication System (PAPR 감소와 효과적 채널 추정을 위한 SC-FDMA 통신 시스템의 파이럿 배치 방법)

  • An, Dong-Geon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • PAPR of the pilot symbols can be reduced down by the CAZAC sequence in the SC-FDMA communication system. However, it is very complicated and takes quite a long time to compute the interpolation between the OFDM information symbols for the channel estimation because the pilot data are trasmitted in the block type. Furthermore, situation will be much more serious in the severe fading channel. Actually the pilot insertion of the comb type is much efficient and convenient for the channel estimation since the calculation of the interpolation can be made in the frequency domain symbol by symbol. But, the PAPR will be regrown when the pilot data are inserted with the information data in the comb type. So, in this paper, we like to study the PAPR reduction and comb type pilot assignment for the efficient channel estimation. Unlike the conventional SLM(selected mapping) method requiring the side information, our improved SLM method is to use the phase rotation sequence into information data without rotating phase of pilot. We use different pilot data according to the different phase rotation sequence. From the simulation result, it can be confirmed that when SLM method of 4 phase rotation sequence is used, PAPR is almost same to the block type method without pilot.

Secure biometric information delivery scheme of implantable device using code-division multiplexing method (코드 분할 다중화 방식을 이용한 체내삽입장치의 안전한 생체 정보 전달 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • Among recent issues emerging in the areas related to the society, health has received the most attention. In this paper, for a patient unable to do self-care because of worsened diseases, a biological information transfer method is proposed by which the disease information can be securely managed, by attaching an implantable device into the body. Our method object of the invention is to prevent a third party from illegally intercepting and interfering with the biological information attached to the insertion device in the body. In the proposed technique to improve the safety of the patient between the hospital and physician by assigning each code to the biometric information of the patient in order to prevent a third party tapping and interfering. In addition, our method is assigned a code necessary for encoding in advance to confirm the biological information between the patient and the hospital (doctor) in a manner dividing the bio-information code. In particular, the proposed technique makes a third party unable to illegally tap or interfere in, by previously generating a code used for encoding so that it can be stored in the database of the hospital, which not only decreased hospital care time to 6.9%, but also increased work efficiency rate up to 12.7%.

CAN Data Compression Using DLC and Compression Area Selection (DLC와 전송 데이터 압축영역 설정을 이용한 CAN 데이터 압축)

  • Wu, Yujing;Chung, Jin-Gyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.99-107
    • /
    • 2013
  • Controller area network (CAN) was designed for multiplexing communication between electronic control units (ECUs) in vehicles and thus for decreasing the overall wire harness. The increasing number of ECUs causes the CAN bus overloaded and consequently the error probability of data transmission increases. Since the time duration for the data transmission is proportional to CAN frame length, it is desirable to reduce the frame length. In this paper, a CAN message compression method is proposed using Data Length Code (DLC) and compression area selection algorithm to reduce the CAN frame length and the error probability during the transmission of CAN messages. By the proposed method, it is not needed to predict the maximum value of the difference in successive CAN messages as opposed to other compression methods. Also, by the use of DLC, we can determine whether the received CAN message has been compressed or not without using two ID's as in conventional methods. By simulations using actual CAN data, it is shown that the CAN transmission data is reduced up to 52 % by the proposed method, compared with conventional methods. By using an embedded test board, it is shown that 64bit EMS CAN data compression can be performed within 0.16ms and consequently the proposed algorithm can be used in automobile applications without any problem.

Design of an Adaptive Reed-Solomon Decoder with Varying Block Length (가변 블록길이를 갖는 적응형 리드솔로몬 복호기의 설계)

  • Song, Moon-Kyou;Kong, Min-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.365-373
    • /
    • 2003
  • In this paper, we design a versatle RS decoder which can decode RS codes of any block length n as well as any message length k, based on a modified Euclid's algorithm (MEA). This unique feature is favorable for a shortened RS code of any block length it eliminates the need to insert zeros before decoding a shortened RS code. Furthermore, the value of error correcting capability t can be changed in real time at every codeword block. Thus, when a return channel is available, the error correcting capability can be adaptiverly altered according to channel state. The decoder permits 4-step pipelined processing : (1) syndrome calculation (2) MEA block (3) error magnitude calculation (4) decoder failure check. Each step is designed to form a structure suitable for decoding a RS code with varying block length. A new architecture is proposed for a MEA block in step (2) and an architecture of outputting in reversed order is employed for a polynomial evaluation in step (3). To maintain to throughput rate with less circuitry, the MEA block uses not only a multiplexing and recursive technique but also an overclocking technique. The adaptive RS decoder over GF($2^8$) with the maximal error correcting capability of 10 has been designed in VHDL, and successfully synthesized in a FPGA.

Smart City Energy Inclusion, Towards Becoming a Better Place to Live

  • Cha, Sang-Ryong
    • World Technopolis Review
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2019
  • Where is a better place to live? In the coming era, this should be more than simply a livable place. It should be an adaptable place that has a flexible system adaptable to any new situation in terms of diversity. Customization and real-time operation are needed in order to realize this technologically. We expect a smart city to have a flexible system that applies technologies of self-monitoring and self-response, thereby being a promising city model towards being a better place to live. Energy demand and supply is a crucial issue concerning our expectations for the flexible system of a smart city because it is indispensable to comfortable living, especially city living. Although it may seem that energy diversification, such as the energy mix of a country, is a matter of overriding concern, the central point is the scale of place to build grids for realizing sustainable urban energy systems. A traditional hard energy path supported by huge centralized energy systems based on fossil and nuclear fuels on a national scale has already faced difficult problems, particularly in terms of energy flexibility/resilience. On the other hand, an alternative soft energy path consisting of small diversified energy systems based on renewable energy sources on a local scale has limitations regarding stability, variability, and supply potential despite the relatively light economic/technological burden that must be assumed to realize it. As another alternative, we can adopt a holonic path incorporating an alternative soft energy path with a traditional hard energy path complimentarily based on load management. This has a high affinity with the flexible system of a smart city. At a system level, the purpose of all of the paths mentioned above is not energy itself but the service it provides. If the expected energy service is fixed, the conclusive factor in choosing a more appropriate system is accessibility to the energy service. Accessibility refers to reliability and affordability; the former encompasses the level of energy self-sufficiency, and the latter encompasses the extent of energy saving. From this point of view, it seems that the small diversified energy systems of a soft energy path have a clear advantage over the huge centralized energy systems of a hard energy path. However, some insuperable limitations still remain, so it is reasonable to consider both energy systems continuing to coexist in a multiplexing energy system employing a holonic path to create and maintain reliable and affordable access to energy services that cover households'/enterprises' basic energy needs. If this is embodied in a smart city concept, this is nothing else but smart energy inclusion. In Japan, following the Fukushima nuclear accident in 2011, a trend towards small diversified energy systems of a soft energy path intensified in order to realize a nuclear-free society. As a result, the Government of Japan proclaimed in its Fifth Strategic Energy Plan that renewable energy must be the main source of power in Japan by 2050. Accordingly, Sony vowed that all the energy it uses would come from renewable sources by 2040. In this situation, it is expected that smart energy inclusion will be achieved by the Japanese version of a smart grid based on the concept of a minimum cost scheme and demand response.

Performance of Uncompressed Audio Distribution System over Ethernet with a L1/L2 Hybrid Switching Scheme (L1/L2 혼합형 중계 방법을 적용한 이더넷 기반 비압축 오디오 분배 시스템의 성능 분석)

  • Nam, Wie-Jung;Yoon, Chong-Ho;Park, Pu-Sik;Jo, Nam-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.108-116
    • /
    • 2009
  • In this paper, we propose a Ethernet based audio distribution system with a new L1/L2 hybrid switching scheme, and evaluate its performance. The proposed scheme not only offers guaranteed low latency and jitter characteristics that are essentially required for the distribution of high-quality uncompressed audio traffic, and but also provide an efficient transmission of data traffic on the Ethernet environment. The audio distribution system with a proposed scheme consists of a master node and a number of relay nodes, and all nodes are mutually connected as a daisy-chain topology through up and downlinks. The master node generates an audio frame for each cycle of 125us, and the audio frame has 24 time slotted audio channels for carrying stereo 24 channels of 16-bit PCM sampled audio. On receiving the audio frame from its upstream node via the downlink, each intermediate node inserts its audio traffic to the reserved time slot for itself, then relays again to next node through its physical layer(L1) transmission - repeating. After reaching the end node, the audio frame is loopbacked through the uplink. On repeating through the uplink, each node makes a copy of audio slot that node has to receive, then play the audio. When the audio transmission is completed, each node works as a normal L2 switch, thus data frames are switched during the remaining period. For supporting this L1/L2 hybrid switching capability, we insert a glue logic for parsing and multiplexing audio and data frames at MII(Media Independent Interlace) between the physical and data link layers. The proposed scheme can provide a good delay performance and transmission efficiency than legacy Ethernet based audio distribution systems. For verifying the feasibility of the proposed L1/L2 hybrid switching scheme, we use OMNeT++ as a simulation tool with various parameters. From the simulation results, one can find that the proposed scheme can provides outstanding characteristics in terms of both jitter characteristic for audio traffic and transmission efficiency of data traffics.