• 제목/요약/키워드: Time-frequency function

검색결과 1,277건 처리시간 0.024초

Rectangular prism pressure coherence by modified Morlet continuous wavelet transform

  • Le, Thai-Hoa;Caracoglia, Luca
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.661-682
    • /
    • 2015
  • This study investigates the use of time-frequency coherence analysis for detecting and evaluating coherent "structures" of surface pressures and wind turbulence components, simultaneously on the time-frequency plane. The continuous wavelet transform-based coherence is employed in this time-frequency examination since it enables multi-resolution analysis of non-stationary signals. The wavelet coherence quantity is used to identify highly coherent "events" and the "coherent structure" of both wind turbulence components and surface pressures on rectangular prisms, which are measured experimentally. The study also examines, by proposing a "modified" complex Morlet wavelet function, the influence of the time-frequency resolution and wavelet parameters (i.e., central frequency and bandwidth) on the wavelet coherence of the surface pressures. It is found that the time-frequency resolution may significantly affect the accuracy of the time-frequency coherence; the selection of the central frequency in the modified complex Morlet wavelet is the key parameter for the time-frequency resolution analysis. Furthermore, the concepts of time-averaged wavelet coherence and wavelet coherence ridge are used to better investigate the time-frequency coherence, the coherently dominant events and the time-varying coherence distribution. Experimental data derived from physical measurements of turbulent flow and surface pressures on rectangular prisms with slenderness ratios B/D=1:1 and B/D=5:1, are analyzed.

주파수역 피드백시스템인식을 이용한 연속시간 제어기 설계 (Continuous-Time Controller Design using Identification of Feedback System in Frequency Domain)

  • 양호석;정유철;이건복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.664-669
    • /
    • 2001
  • Continuous-time controller design is proposed using feedback system identification in frequency domain. System stability imposed by a new controller is checked in the function of a conventional closed-loop system, instead of a poorly modeled plant due to non-linearity and disturbance as well as unstable components, etc. The stability of the system is evaluated in view of Nyquist stability. All the equations are formulated in the framework of the discrete-time system. Simulation results are shown on the plant with input saturation and DC disturbance.

  • PDF

주파수 전달함수 합성법에 의한 모델축소 및 PID 제어기 설계 (A Model Reduction and PID Controller Design Via Frequency Transfer Function Synthesis)

  • 김주식;곽명신;김종근;전병석;정수현
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.34-40
    • /
    • 2005
  • This paper presents a frequency transfer function synthesis for simplifying a high-order model with time delay to a low-order model. A model reduction is based on minimizing the error function weighted by the numerator polynomial of reduced systems. The proposed method provides better low frequency fit and a computer aided algorithm. And in this paper, we present a design method of PID controller for achieving the desired specifications via the reduced model. The proposed method identifies the parameter vector of PID controller from a linear system that develops from rearranging the two dimensional input matrices and output vectors obtained from the frequency bounds.

Earthquake time-frequency analysis using a new compatible wavelet function family

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.839-852
    • /
    • 2012
  • Earthquake records are often analyzed in various earthquake engineering problems, making time-frequency analysis for such records of primary concern. The best tool for such analysis appears to be based on wavelet functions; selection of which is not an easy task and is commonly carried through trial and error process. Furthermore, often a particular wavelet is adopted for analysis of various earthquakes irrespective of record's prime characteristics, e.g. wave's magnitude. A wavelet constructed based on records' characteristics may yield a more accurate solution and more efficient solution procedure in time-frequency analysis. In this study, a low-pass reconstruction filter is obtained for each earthquake record based on multi-resolution decomposition technique; the filter is then assigned to be the normalized version of the last approximation component with respect to its magnitude. The scaling and wavelet functions are computed using two-scale relations. The calculated wavelets are highly efficient in decomposing the original records as compared to other commonly used wavelets such as Daubechies2 wavelet. The method is further advantageous since it enables one to decompose the original record in such a way that a clear time-frequency resolution is obtained.

고빈도 경피신경전기자극의 자극강도에 따른 정상 성인여성 교감신경성 반응의 변화 (Changes in Sympathetic Nervous System Responses of Healthy Adult Women with Changes in the Stimulus Intensity of High Frequency Transcutaneous Electrical Nerve Stimulation)

  • 최유림;이정우
    • The Journal of Korean Physical Therapy
    • /
    • 제22권1호
    • /
    • pp.61-66
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the change in sympathetic nervous system responses of healthy adult women with changes in stimulus intensity of high frequency transcutaneous electrical nerve stimulation. Methods: Twenty-four healthy subjects (women) received high frequency electrical stimulation of the forearm. The subjects were randomly assigned to one of two groups; a low intensity stimulation group (n=12) and a high intensity stimulation group (n=12). The electrode attachment was arranged on the forearm of the dominant arm and the electricity stimulus time was 20 minutes. Measured items included skin conductance, pulse rate, skin temperature, and respiration rate. Each was measured at 4 times. Results: Skin conductance and skin temperature showed significant group by time interactions, though there were no significant group and time effects. There were no significant differences according to time, group effect, and a group by time interaction in pulse and respiration rates. Conclusion: High frequency and high intensity electrical stimulation may be helpful for the improvement of sudomotor function through the activation of the sympathetic nervous system. Also, high frequency and low intensity electrical stimulation may be helpful for the reduction of sudomotor function via inhibition of the sympathetic nervous system.

반복 이산 웨이브릿 변환을 이용한 주파수 추정 기법 (Frequency Estimation Technique using Recursive Discrete Wavelet Transform)

  • 박철원
    • 전기학회논문지P
    • /
    • 제60권2호
    • /
    • pp.76-81
    • /
    • 2011
  • Power system frequency is the main index of power quality indicating an abnormal state and disturbances of systems. The nominal frequency is deviated by sudden change in generation and load or faults. Power system is used as frequency relay to detection for off-nominal frequency operation and connecting a generator to an electrical system, and V/F relay to detection for an over-excitation condition. Under these circumstances, power system should maintain the nominal frequency. And frequency and frequency deviation should accurately measure and quickly estimate by frequency measurement device. The well-known classical method, frequency estimation technique based on the DFT, could be produce the gain error in accuracy. To meet the requirements for high accuracy, recently Wavelet transforms and analysis are receiving new attention. The Wavelet analysis is possible to calculate the time-frequency analysis which is easy to obtain frequency information of signals. However, it is difficult to apply in real-time implementation because of heavy computation burdens. Nowadays, the computational methods using the Wavelet function and transformation techniques have been searched on these fields. In this paper, we apply the Recursive Discrete Wavelet Transform (RDWT) for the frequency estimation. In order to evaluate performance of the proposed technique, the user-defined arbitrary waveforms are used.

가변 주파수 변환을 위한 시간 영역 다중채널 신호처리 알고리즘 (Time Domain Multiple-channel Signal Processing Method for Converting the Variable Frequency Band)

  • 유재호;김현수;이규하;이정섭;정재학
    • 한국통신학회논문지
    • /
    • 제35권1A호
    • /
    • pp.71-79
    • /
    • 2010
  • 다중채널 신호처리 알고리즘은 사용 주파수 대역의 가변성, 효율적인 전송전력 할당, 서로 다른 전송률과 대역을 요구하는 서비스 형태를 충족시키기 위한 가변 주파수 대역 변환을 요구한다. 본 논문에서는 다중채널 반송파 신호의 가변 주파수 대역 변환을 위해 시간 영역의 윈도우 함수와 DFT(Discrete Fourier Transform)를 이용한 다중채널 신호처리 알고리즘을 제안한다. 제안한 알고리즘은 기존의 주파수 영역에서 대역통과 신호처리를 하는 다중채널 신호처리 알고리즘과 달리, 시간 영역에서 윈도우 함수를 사용한 블록 신호처리를 하기 때문에 기존의 주파수 영역에서 신호처리 방식보다 연산이 간단하며 효율적인 주파수 변환을 할 수 있다. 전산모의 실험을 통해 제안한 알고리즘의 출력신호 복원과 가변 주파수 대역 변환이 효율적으로 이루어지는 것을 보였다.

불규칙 신호의 웨이블렛 기법을 이용한 결함 진단 (Fault Diagnosis Using Wavelet Transform Method for Random Signals)

  • 김우택;심현진;아미누딘빈아부;이해진;이정윤;오재응
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.80-89
    • /
    • 2005
  • In this paper, time-frequency analysis using wavelet packet transform and advanced-MDSA (Multiple Dimensional Spectral Analysis) which based on wavelet packet transform is applied fur fault source identification and diagnosis of early detection of fault non-stationary sound/vibration signals. This method is analyzing the signal in the plane of instantaneous time and instantaneous frequency. The results of ordinary coherence function, which obtained by wavelet packet analysis, showed the possibility of early fault detection by analysis at the instantaneous time. So, by checking the coherence function trend, it is possible to detect which signal contains the major fault signal and to know how much the system is damaged. Finally, It is impossible to monitor the system is damaged or undamaged by using conventional method, because crest factor is almost constant under the range of magnitude of fault signal as its approach to normal signal. However instantaneous coherence function showed that a little change of fault signal is possible to monitor the system condition. And it is possible to predict the maintenance time by condition based maintenance for any stationary or non-stationary signals.

시간-주파수 변환을 이용한 고속철도차량의 동특성 분석 (Analysis of Dynamic Characteristics of High Speed Trains Using a Time Varying Frequency Transform)

  • 이준석;최성훈;김상수;박춘수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.841-848
    • /
    • 2008
  • This paper examined dynamic characteristics of high speed trains using a time varying frequency transform. Fourier transform based methods are frequently used for the calculation of the dynamic characteristics of trains in the frequency domain, but they cannot represent the time-varying characteristics. Therefore it is necessary to examine their characteristics using a time-varying frequency transform. For the examination, the non-stationary vibration of wheelset, bogie, and carbody are measured using accelerometers and stored in a data aquisition system. They are processed with localization of the data by modulating with a window function, and Fourier transform is taken to each localized data, called the short-time Fourier transform. From the processed results, time varying auto-spectral density, cross-spectral density, frequency response, and coherence functions have been calculated. From the analysis, it is confirmed that the time varying frequency transform is a useful method for analyzing the dynamic characteristics of high speed trains.

  • PDF

집중질량 충격시스템의 불규칙가진에 대한 응답특성 (Response Characteristics of a Lumped Parameter Impact System under Random Excitation)

  • 이창희
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.778-784
    • /
    • 1999
  • A method for obtaining the motion of an impact system whose primary and secondary system are composed of lumped masses, springs and dampers, and all the contacts are made through spring and damping elements is presented. The frequency response functions derived from the equations of motion and the impulse response functions obtained from the inverse Fourier transform of the derived frequency response functions are used for the calculation of the system responses. The procedure developed for the calculation of displacements and force time-histories was based on the convolution integrals of impulse response functions and forces applied to the systems. Time histories of displacements and contact forces are obtained for the case where a random excitation is applied to a point in the system. Impact statistics such as contact forces and the time between impacts calculated from those time histories is presented.

  • PDF