• Title/Summary/Keyword: Time-frequency analysis

Search Result 4,783, Processing Time 0.269 seconds

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform(WFT or STFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform(WT) is used to decompose the acoustic emission(AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee Zhang-Kyu;Yoon Joung-Hwi;Woo Chang-Ki;Park Sung-Oan;Kim Bong-Gag;Jo Dae-Hee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.342-348
    • /
    • 2005
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform (WFT or SIFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform (WT) is used to decompose the acoustic emission (AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

  • PDF

A Hybrid System of Joint Time-Frequency Filtering Methods and Neural Network Techniques for Foreign Exchange Rate Forecasting (환율예측을 위한 신호처리분석 및 인공신경망기법의 통합시스템 구축)

  • 신택수;한인구
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.103-123
    • /
    • 1999
  • Input filtering as a preprocessing method is so much crucial to get good performance in time series forecasting. There are a few preprocessing methods (i.e. ARMA outputs as time domain filters, and Fourier transform or wavelet transform as time-frequency domain filters) for handling time series. Specially, the time-frequency domain filters describe the fractal structure of financial markets better than the time domain filters due to theoretically additional frequency information. Therefore, we, first of all, try to describe and analyze specially some issues on the effectiveness of different filtering methods from viewpoint of the performance of a neural network based forecasting. And then we discuss about neural network model architecture issues, for example, what type of neural network learning architecture is selected for our time series forecasting, and what input size should be applied to a model. In this study an input selection problem is limited to a size selection of the lagged input variables. To solve this problem, we simulate on analyzing and comparing a few neural networks having different model architecture and also use an embedding dimension measure as chaotic time series analysis or nonlinear dynamic analysis to reduce the dimensionality (i.e. the size of time delayed input variables) of the models. Throughout our study, experiments for integration methods of joint time-frequency analysis and neural network techniques are applied to a case study of daily Korean won / U. S dollar exchange returns and finally we suggest an integration framework for future research from our experimental results.

  • PDF

Fatigue Characteristics of High Strength Fire Resistance Steel for Frame Structure and Time-Frequency Analysis its Acoustic Emission Signal (고강도 구조용 내화강의 피로특성 및 음향방출신호의 시간-주파수 해석)

  • Kim, Hyun-Soo;Nam, Ki-Woo;Kang, Chang-Young
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.67-72
    • /
    • 2000
  • Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments especially when they are In non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc.

  • PDF

A Study on Analysis of Time Delay Model Using Autoregressive Method for Mobile Communication Channels (AR 모델을 이용한 이동 통신 채널의 시간 지연 해석기법에 관한 연구)

  • 이형권;류은숙;이종길
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.29-32
    • /
    • 1999
  • In this study, the time delay model were simulated using the well-known AR model. Frequency response of the time delay model can be obtained by mapping AR model to JTC model in the time domain. That is, from the few measurement data in JTC model, the channel frequency response can be obtained by the estimation of AR model parameters. From this channel frequency response, the time delay model can be obtained using Fourier transformation. To prove the validity of the suggested method, three models of JTC were shown and analyzed.

  • PDF

Time-Frequency Analysis of Electrohysterogram for Classification of Term and Preterm Birth

  • Ryu, Jiwoo;Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In this paper, a novel method for the classification of term and preterm birth is proposed based on time-frequency analysis of electrohysterogram (EHG) using multivariate empirical mode decomposition (MEMD). EHG is a promising study for preterm birth prediction, because it is low-cost and accurate compared to other preterm birth prediction methods, such as tocodynamometry (TOCO). Previous studies on preterm birth prediction applied prefilterings based on Fourier analysis of an EHG, followed by feature extraction and classification, even though Fourier analysis is suboptimal to biomedical signals, such as EHG, because of its nonlinearity and nonstationarity. Therefore, the proposed method applies prefiltering based on MEMD instead of Fourier-based prefilters before extracting the sample entropy feature and classifying the term and preterm birth groups. For the evaluation, the Physionet term-preterm EHG database was used where the proposed method and Fourier prefiltering-based method were adopted for comparative study. The result showed that the area under curve (AUC) of the receiver operating characteristic (ROC) was increased by 0.0351 when MEMD was used instead of the Fourier-based prefilter.

Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.195-205
    • /
    • 2018
  • Research on Lamb wave-based damage identification in plate-like structures depends on precise knowledge of dispersive wave velocity. However, boundary reflections with the same frequency of interest and greater amplitude contaminate direct waves and thus compromise measurement of Lamb wave dispersion in different materials. In this study, non-reflecting boundaries were proposed in both numerical and experimental cases to facilitate time-frequency characterization of Lamb wave dispersion. First, the Lamb wave equations in isotropic and laminated materials were analytically solved. Second, the non-reflecting boundaries were used as a series of frames with gradually increased damping coefficients in finite element models to absorb waves at boundaries while avoiding wave reflections due to abrupt property changes of each frame. Third, damping clay was sealed at plate edges to reduce the boundary reflection in experimental test. Finally, the direct waves were subjected to the slant-stack and short-time Fourier transformations to calculate the dispersion curves of phase and group velocities, respectively. Both the numerical and experimental results suggest that the boundary reflections are effectively alleviated, and the dispersion curves generated by the time-frequency analysis are consistent with the analytical solutions, demonstrating that the combination of non-reflecting boundary and time-frequency analysis is a feasible and reliable scheme for characterizing Lamb wave dispersion in plate-like structures.

Fundamental Frequency Estimation based on Time-Frequency Analysis (시주파수 분석법을 이용한 음성의 기본주파수 검출)

  • Iem Byeong-Gwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.31-34
    • /
    • 2006
  • A simple robust fundamental frequency estimator on the time-frequency domain is proposed. Combined with the appropriately designed low-pass filter, the instantaneous frequency estimator based on the Teager-Kaiser energy function can detect the fundamental frequency of speech signal. The Teager-Kaiser function can be obtained through real computation and show the change of frequency as time goes. And when a speech block with N samples is processed with a lowpass fille. with length of L, it requires $O(N{\cdot}(L+5))operations,$ compared to $O(N{\cdot}2log_2N+L))operations$ in the recently introduced wavelet and conventional instantaneous frequency method. The computer simulation confirms the usefulness of the proposed fundamental frequency estimation method.

The Selection of the Optimal Gator Wavelet Shape Factor Using the Shannon Entropy Concept (Shannon 엔트로피 개념을 이용한 가보 웨이블렛 최적 형상의 선정)

  • Hong, Jin-Chul;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.176-181
    • /
    • 2002
  • The continuous Gabor wavelet transform (GWT) has been utilized as a useful time-frequency analysis tool to identify the rapidly-varying characteristics of some wave signals. In the application of GWT, it is important to select the Gabor wavelet with the optimal shape factor by which the time-frequency distribution of a signal can be accurately estimated. To find the signal-dependent optimal Gabor wavelet shape factor, the notion of the Shannon entropy which mesures the extent of signal energy concentration in the time-frequency plane is employed. To verify the validity of the present entropy-based scheme, we have applied it to the time-frequency analysis of a set of elastic bending wave signals generated by an impact in a solid cylinder.

  • PDF

Time Domain Analysis on Deck Wetness of a Caisson Wet-towed in Irregular Waves (불규칙 파랑 중 직접 예인하는 케이슨의 상판침수에 대한 시간 영역 해석)

  • Heo, Jae-Kyung;Park, Chang-Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • A numerical analysis on deck wetness is carried out for a large caisson directly wet-towed by tugs in irregular waves. A constant panel method is used for linear analysis in frequency domain and a statistical post-processing for the deck wetness is presented. Hydrodynamic coefficients obtained from the frequency domain computation are imported for time domain analysis which enables complete modeling for towing equipment, environment, etc. Both frequency and time domain computations over two sea states are performed and comparison is made. In the time domain analysis, towing systems of various arrangements of tugs are investigated from short-term prediction for the largest deck wetness and the number of occurrences of deck wetness.