• Title/Summary/Keyword: Time-domain reflectometry (TDR)

Search Result 125, Processing Time 0.029 seconds

Implementation of TFDR system with PXI type instruments for detection and estimation of the fault on the coaxial cable (동축 케이블의 결함 측정에 있어서 PXI 타입의 계측기를 이용한 개선된 TFDR 시스템의 구현)

  • Choe, Deok-Seon;Park, Jin-Bae;Yun, Tae-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.91-94
    • /
    • 2003
  • In this paper, we achieve implementation of a Time-Frequency Domain Reflectometry(TFDR) system through comparatively low performance(100MS/s) PCI extensions for Instrumentation(PXI). The TFDR is the general methodology of Time Domain Reflectometry(TDR) and Frequency Domain Reflectometry(FDR). This methodology is robust in Gaussian noises, because the fixed frequency bandwidth is used. Moreover, the methodology can get more information of the fault by using the normalized time-frequency cross correlation function. The Arbitrary Waveform Generator(AWG) module generates the input signal, and the digital oscilloscope module acquires the input and reflected signals, while PXI controller module performs the control of the total PXI modules and execution of the main algorithm. The maximum range of measurement and the blind spot are calculated according ta variations of time duration and frequency bandwidth. On the basis of above calculations, the algorithm and the design of input signals used in the TFDR system are verified by real experiments. The correlation function is added to the TDR methodology for reduction of the blind spot in the TFDR system.

  • PDF

Design, analyses, and evaluation of a spiral TDR sensor with high spatial resolution

  • Gao, Quan;Wu, Guangxi;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.683-699
    • /
    • 2015
  • Time Domain Reflectometry (TDR) has been extensively applied for various laboratory and field studies. Numerous different TDR probes are currently available for measuring soil moisture content and detecting interfaces (i.e., due to landslides or structural failure). This paper describes the development of an innovative spiral-shaped TDR probe that features much higher sensitivity and resolution in detecting interfaces than existing ones. Finite element method (FEM) simulations were conducted to assist the optimization of sensor design. The influence of factors such as wire interval spacing and wire diameter on the sensitivity of the spiral TDR probe were analyzed. A spiral TDR probe was fabricated based on the results of computer-assisted design. A laboratory experimental program was implemented to evaluate its performance. The results show that the spiral TDR sensor featured excellent performance in accurately detecting thin water level variations with high resolution, to the thickness as small as 0.06 cm. Compared with conventional straight TDR probe, the spiral TDR probe has 8 times the resolution in detecting the water level changes. It also achieved 3 times the sensitivity of straight TDR probe.

A Study on Measuring and Calibration Method using Time Domain Reflectometry Sensor under Road Pavement (Time Domain Reflectometry 방식을 이용한 도로 하부의 함수비 계측 및 보정 방안에 관한 연구)

  • Cho, Myung-Hwan;Lee, Yoon-Han;Kim, Nak-Seok;Park, Joo-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.23-30
    • /
    • 2010
  • The research presents moisture content measuring and calibration method of road pavement, especially asphalt concrete pavement for performance evaluation or remaining life prediction using Time Domain Reflectometry(TDR) sensor, CS616 made by campbell INC. Before calibration test of CS616, accomplished a sensor verification tests. Verification test items were covering depth and interference effect of two CS616 sensors, temperature effects between $5^{\circ}C\sim25^{\circ}C$ and compaction ratio effects. Covering depth and interference effects between two CS616 sensors were just small and the effects of temperature and compaction ratio effected a Volumetric Moisture Contents at $\pm6%$ under disregard appeared with the fact that was possible. Also, obtained the calibration equation of the subgrade and subbase course, $R^2$ showed above of all 0.9.

Performance Comparison and Improvement of STDR/SSTDR Schemes Using Various Sequences (여러 가지 수열을 적용한 STDR/SSTDR 기법의 성능 비교 및 개선)

  • Han, Jeong Jae;Park, So Ryoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.11
    • /
    • pp.637-644
    • /
    • 2014
  • This paper investigates the detection performance of fault location using STDR(sequence time domain reflectometry) and SSTDR(spread spectrum time domain reflectometry) with various length and types of sequences, and then, proposes an improved detection technique by eliminating the injected signal in SSTDR. The detection error rates are compared and analyzed in power line channel model with various fault locations, fault types, and spreading sequences such as m-sequence, binary Barker sequence, and 4-phase Frank sequence. It is shown that the proposed technique is able to improve the detection performance obviously when the reflected signal is weak or the fault location is extremely close.

A critical comparison of reflectometry methods for location of wiring faults

  • Furse, Cynthia;Chung, You Chung;Lo, Chet;Pendayala, Praveen
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.25-46
    • /
    • 2006
  • Aging wiring in buildings, aircraft and transportation systems, consumer products, industrial machinery, etc. is among the most significant potential causes of catastrophic failure and maintenance cost in these structures. Smart wire health monitoring can therefore have a substantial impact on the overall health monitoring of the system. Reflectometry is commonly used for locating faults on wire and cables. This paper compares Time domain reflectometry (TDR), frequency domain reflectometry (FDR), mixed signal reflectometry (MSR), sequence time domain reflectometry (STDR), spread spectrum time domain reflectometry (SSTDR) and capacitance sensors in terms of their accuracy, convenience, cost, size, and ease of use. Advantages and limitations of each method are outlined and evaluated for several types of aircraft cables. The results in this paper can be extrapolated to other types of wire and cable systems.

Analysis of the Time Domain Reflectometry for the Monitoring of Rock Displacement (시간 영역 반사법에 의한 암반 변위의 계측 기술 분석)

  • 정소걸
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.70-76
    • /
    • 1995
  • Two types of deformations can occur on the cable during the monitoring of the rock displacement by the time domain reflectometry. One is the impedance model for tensile deformation, and the other is the capacitance model for the shear deformation. The former gives a response signal with a gradual change in the amplitude of the reflected voltage, meanwhile the latter produces a signal with a blunted spike. The resolution of the TDR can be improved to 0.125% using calibration crimps on the cable of 60 meters long. It is recommended that the diameter of the cable should be 18 mm at least in order to induce a better reflected pulse without any open-circuit. The actual TDR technique cannot characterize the type and the magnitude of rock displacement quantitatively. Systematic investigation of the TDR parameters, such as the exact of cable diameter, cable length, number of crimps, combination of shearing and extension, and environment of the TDR equipment, will be able to improve the resolution to 0.01 mm.

  • PDF

Model-Based Detection of Pipe Leakage at Joints (모델 기반 파이프 연결부 누수 감지 시스템)

  • Kim, Taejin;Youn, Byeng D.;Woo, Sihyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.347-352
    • /
    • 2015
  • Time domain reflectometry (TDR) is widely used for wire failure detection. It transmits a pulse that is reflected at the boundaries of different characteristic impedances. By analyzing the reflected signal, TDR makes it possible to locate the failure. In this study, TDR was used to detect the water leakage at a pipe joint. A wire attached to the pipe surface was soaked by water when a leak occurred, which affected the characteristic impedance of the wet part, resulting in a change in the reflected signal. To infer the leakage from the TDR signal, we first developed a finite difference time domain-based forward model that provided the output of the TDR signal given the configuration of the transmission line. Then, by solving the inverse problem, the locations of the leaks were found.

Low-Cost CAP-type TDR Exploration Techniques for Leak Detection (누수탐지를 위한 저비용 CAP형 TDR 탐사기법)

  • Kim, Jin Man;Choi, Bong Hyuck;Cho, Jin Woo;Cho, Won Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1479-1487
    • /
    • 2013
  • The river levee collapse and flood damages are dramatically increased due to the floods which caused by abnormal weather nowadays. The counterplan like TDR(Time Domain Reflectometry) river levee leaking exploration technique is needed to that levee failure causes of levee failure such as levee failure by penetration, piping, inadequate levee materials selection, poor compaction are almost 52% of the failure. This research practiced various comparing experiments of existing TDR(probe and tube types) and developing CAP type TDR to evaluate acrylic small CAP mould and low-cost TDR levee leaking monitoring system which was used probe type TDR. As the result, evaluated TDR system had 20cm critical exploration performance which was a leaking exploration performance, The functional ratio of TDR exploration sensitivity of dry density was sensitive more than 3 times than dry density, and weathered granite soil foundation water contents(w)-dielectric constant(${\epsilon}$) corelation formula was suggested to measure functional ratio on developing cap type TDR system.

Measurement of Soil Water Content by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양함수량의 측정)

  • Park, Jae-Hyeon;Yun, Seong-Yong;Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.587-595
    • /
    • 1997
  • Experimental study on unsaturated flow in the soil is important to understand the characteristics of the water flow. Measurement of unsteady-state water movement using the traditional equipment (e.g. tensiometer) has a problem that requires relatively a long response time. In this study a quick measurement method of soil water flow using TDR is introduced. TDR consists of an electronic function generator which generates a squared wave, and an oscilloscope which catches the reflected wave. The wave is reflected where both the impedance of the transmission line and the propagation velocity are changed. The water content can be obtained from the travel time measured by means of TDR because the dielectric constant is affected by the change of soil water content. From the result of TDR calibration. TDR measurement error for the oven dried soil was found to be less than 3.5%. This supports that TDR is a viable technique to measure the unsteady-state water movement.

  • PDF

A Study on the Calibrate Method of Volumetric Moisture Content Measuring Sensor(CS616) (TDR(Time Domain Reflectometry) 방식의 함수센서 (CS616) 보정방법에 관한 연구)

  • Cho, Myung-Hwan;Kim, Hong-Man;Jee, Kee-Hwan;Park, Joo-Young
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.89.1-89.1
    • /
    • 2010
  • 본 연구는 토양의 함수비를 측정하기 위하여 TDR(Time Domain Reflectometry, 시간영역 광전자파 분석기) 방식의 함수센서(CS616)에 대한 올바른 보정시험을 제안하기 위하여 피복두께, 센서간 간섭 영향, 온도의 영향 및 다짐율 변화에 대한 실내 시험을 수행하였다. 시험 결과 피복두께, 센서간 간섭 영향 및 온도의 영향은 체적함수비의 크기에 미치는 영향은 크지 않은 것으로 나타났으며, 오히려 보정시험시 정확한 체적함수비 조건을 유지하는 것이 중요할 것으로 사료된다. 또한 보정시험을 수행할 때 다짐율까지 고려한 시험을 수행하는 노력에 비하여 얻어지는 체적함수비의 정확도의 크기는 다짐율과 주기를 고려하여 얻어진 회귀식을 살펴보면 주기에 비하여 상대적으로 영향이 작은 것으로 사료된다.

  • PDF