• Title/Summary/Keyword: Time-domain Analysis

Search Result 2,321, Processing Time 0.029 seconds

A Study of PSs Modeling of Ulchin N/P #1 by AVR Step Test (AVR 스템시험에 의한 울진 N/P 1호기 PSS 모델링 연구)

  • 김동준;문영환;전동훈;김태균
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.351-358
    • /
    • 2001
  • This paper deals with the PSS modeling of Ulchin N/P #1 as well as the generator and excitation system modeling by utilizing the recorded data from AVR step test, which has been performed by entering small voltage signal into the AVR summing point. In addition to it. two recorded results obtained from the AVR step test with PSS sunning and without PSS running have not only been compared each other on the time domain, but also they heve been analyzed with FFT analysis on the frequency domain; thus, the desirable effects of running PSS in Ulchin N/P #1 on power system have been explicitly confirmed. Finally, the derived PSS model parameters lead to good matches between simulation results and recorded data.

  • PDF

Analysis of Surface Roughness by FFT Analyzer in Turning Operation (선반작업(旋盤作業)에서의 FFT Analyzer에 의한 표면(表面)거칠기 해석(解析))

  • Kim, Gyung-Nyun;Choi, Eun-Soon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.3
    • /
    • pp.12-19
    • /
    • 1992
  • This paper shows that the identified and unidentified components of surface roughness in NC turning lathe which can not be analyzed in time domain such as $R_{max},\;R_a$ can be isolated in frequency domain by FFT analyzer. By interfacing FFT analyzer with stylus surface roughness instrument, surface roughness on change of working condition, especially tool feed, such as 0.1, 0.15, 0.2, 0.25, 0.3(mm/rev) can be analyzed in frequency domain as follows. 1. By frequency analysis of surface roughness profile, the basic wave length of surface roughness can be obtained to isolate the identified and unidentified components of surface roughness. 2. With increase of tool feed, the unidentified components of surface roughness increase. 3. Since $R_{max}$, which can be obtained by stylus surface roughness is proportion to the output voltage of FFT analyzer, FFT analyzer also can be used to measure surface roughness in time domain such $R_a,\;R_{max}$.

  • PDF

Effects of Acupuncture on Heart Rate Variability in Obese Premenopausal Korean Women

  • Yang, Yo-Chan;Kim, Je-In;Kim, Koh-Woon;Cho, Jae-Heung;Kim, Song-Yi;Park, Hi-Joon;Song, Mi-Yeon
    • The Journal of Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.24-35
    • /
    • 2014
  • Objectives: Although the autonomic nervous system (ANS) is thought to play an important role in treatment of obesity, no study has been conducted to investigate acupuncture's effects on this aspect of the ANS. This study aimed to describe the effects of acupuncture in the ANS by means of heart rate variability (HRV) analysis. Methods: A total of 46 obese women aged from 21 to 54 with body mass index ranging from 25.1 to $39.3kg/m^2$ were recruited and randomized into both the real acupuncture group (n=23) and sham acupuncture group (n=23). A total of 3 instances of HRV analysis were conducted before, during, and after treatment. Statistically significant differences between time and groups were analyzed using repeated measure analysis of variance. Results: All parameters of time domain analysis and frequency domain analysis except for the square root of the mean squared differences of successive normal sinus intervals (RMSSD) and very low frequency (VLF) showed significant differences between times. The mean of all R-R intervals (mean RR) showed significant level of interaction between time and group. Between groups, time domain analysis of standard deviation of the normal-to-normal intervals (SDNN), RMSSD and frequency domain analysis of total power (TP) and high frequency (HF) showed significant differences. Conclusions: The real acupuncture group showed deactivation of parasympathetic function and relative increase of sympathetic activity in obese subjects. Further studies are necessary to uncover the mechanisms of acupuncture in obesity treatment.

Evaluation of Tire Lateral Hydroplaning using Measured Vehicle Acceleration (가속도 계측을 이용한 타이어 선회 수막현상의 평가)

  • Kang, Young Kyu;Hwang, JangSoon;Oh, YagJeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.623-625
    • /
    • 2013
  • Tire hydroplaning is one of the most important tire performances, especially for safety on wet road surface. And nowadays various methods such as FEM and FVM analysis are being applied to design and improve tire hydroplaning performance, along with on-vehicle test of tire hydroplaning. Conventional evaluation of tire hydroplaning has been done by comparing peak lateral acceleration and vehicle speed in time domain. But in this paper, frequency domain analysis of lateral acceleration when hydroplaning at high speed has been carried out to get the quantitative comparison between test tires. And it is concluded that the frequency spectrum analysis of lateral acceleration gives much better discrimination, as compared to the conventional time domain analysis of lateral acceleration and vehicle speed.

  • PDF

Directional Winger-Ville Distribution and Its Application to Rotating- Machinery (방향성 Winger-Ville 분포와 회전체에의 응용)

  • Kim, Dong-Wan
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.341-347
    • /
    • 1996
  • Vibration analysis is one of the most powerful tools available for the detection and isolation of incipient faults in mechanical systems. The methods of vibration analysis in use today and under continuous study are broad band vibration monitoring, time domain analysis, and frequency domain analysis. In recent years, great interest has been generated concerning the use of time- frequency repesentation and its application for a machinery diagnostics and condition monitoring system. The objective of the study described in this paper was to develop a new diagnostic tool for the rotating machinery. This paper introduces a new time frequency representation. Directional Winger-Ville Distribution, which analyese the time-frequency structure of the rotating machinery vibration.

  • PDF

Estimation of Fault Location on a Power Line using the Time-Frequency Domain Reflectometry (절연전선 결함 위치 추정에 대한 시간-주파수 영역 반사파 계측법의 적용)

  • Doo, Seung-Ho;Kwak, Ki-Seok;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.268-275
    • /
    • 2008
  • In this paper, we introduce a new method for detecting and estimating faults on a power line using the time-frequency domain reflectometry system. The system rests upon time-frequency signal analysis and uses a chirp signal which is multiplied by Gaussian envelope. The chirp signal is used as a reference signal, and we can get the reflected signal from a fault on a wire. To detect and estimate faults, we analyze the reflected signal by Wigner time-frequency distribution function and normalized time-frequency cross correlation function. In this paper we design an optimal reference signal for power line and implement a system for estimating fault distance on a power line with the TFDR implemented by PXI equipments. This approach is verified by some experiments with HIV 2.25mm power lines.

The Prediction of Dynamic Fatigue Life of Multi-axial Loaded Structure (다축 하중 구조물의 동적 피로수명 예측)

  • Yoon, Moon Young;Kim, Kyeung Ho;Park, Jang Soo;Boo, Kwang Seok;Kim, Heung Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.231-235
    • /
    • 2013
  • The purpose of this paper is to compare with estimation of equivalent fatigue load in time domain and frequency domain and estimate the fatigue life of structure with multi-axial vibration loading. The fatigue analysis with two methods is implemented with various signals like random, sinusoidal signals. Also an equivalent fatigue life estimated by rainflow cycle counting in time domain is compared with results estimated with probability density function of each signal in frequency domain. In case of frequency domain, equivalent fatigue life can estimate through Dirlik's method with probability density function. And the work proposed in this paper compared the fatigue damage accumulated under uni-axial loading to that induced by multi-axial loading. The comparison is preformed for a simple cantilever beam, which is exposed to vibrations of several directions. For verification of estimation performance of fatigue life, results are compared to those of FEM analysis (ANSYS).

Time-Domain Analysis of Wireless Power Transfer System Behavior Based on Coupled-Mode Theory

  • Shim, Hyunjin;Nam, Sangwook;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.219-224
    • /
    • 2016
  • In this paper, coupled-mode theory (CMT) is used to obtain a transient solution analytically for a wireless power transfer system (WPTS) when unit energy is applied to one of two resonators. The solutions are compared with those obtained using equivalent circuit-based analysis. The time-domain CMT is accurate only when resonant coils are weakly coupled and have large quality factors, and the reason for this inaccuracy is outlined. Even though the time-domain CMT solution does not describe the WPTS behavior precisely, it is accurate enough to allow for an understanding of the mechanism of energy exchange between two resonators qualitatively. Based on the time-domain CMT solution, the critical coupling coefficient is derived and a criterion is suggested for distinguishing inductive coupling and magnetic resonance coupling of the WPTS.

Defect evaluations of weld zone in rails considering phase space-frequency demain (위상공간-주파수 영역을 고려한 레일 용접부의 결함 평가)

  • 윤인식;권성태;장영권;정우현;이찬석
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.21-30
    • /
    • 1999
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the phase space-frequency domain. Features extracted from time series signal analyze quantitatively characteristics of weld defects. For this purpose, analysis objectives in this study are features of time domain and frequency domain. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as parts of head and flange even though the types of defects are identified. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 3.848 in the case of part of head(crack) and 4.102 in the case of part of web(side hole) and 3.711 in the case of part of flange(crack) were proposed on the basis of fractal dimension. Proposed phase space-frequency domain method in this study can integrity evaluation for defect signals of rail weld zone such as side hole and crack.

  • PDF

Time Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Forward Speed (전진 동요하는 잠수구에 의한 비선형 조파문제의 시간영역 해석)

  • Ha, Y.R.;Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.75-82
    • /
    • 2010
  • In this study, the topics for free-surface wave simulation, nonlinear hydrodynamic force, and the critical resonance frequency of so-called ${\tau}=U{\omega}/g$=1/4 are discussed. A high-order spectral/boundary element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with forward speed under the free-surface are solved in time domain.