• Title/Summary/Keyword: Time-dependent analysis

Search Result 2,113, Processing Time 0.028 seconds

Determination of the Forming Limit Strain of Sheet Metals by the Time-dependent Method (시간의존법에 의한 금속판재 성형한계변형률의 결정)

  • Kim, S.G.;Oh, T.H.;Kim, J.D.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.361-367
    • /
    • 2015
  • The forming limit diagram (FLD) is the most commonly used tool for evaluating of sheet metal formability in the manufacturing field as well as the finite element analysis (FEA)-based design process. Determination of the forming limits is considerably influenced by testing/measuring machines, techniques and conditions. These influences may cause a large scatter in FLD from laboratory to laboratory. Scatter is especially true when the ‘position-dependent method’, as is specified in most national and international standards, is used. In the current study a new ‘time-dependent method’ is proposed, which is to determine the forming limit strains more accurately and reasonably when producing a FLD from experimental data. This method is based on continual strain measurement during the test. The results are compared to those from the existing standardized methods.

Numerical Analysis to Predict the Time-dependent Behavior of Automotive Seat Foam (자동차용 시트 폼의 시간 의존적 거동 예측을 위한 수치해석)

  • Kang, Gun;Oh, Jeong Seok;Choi, Kwon Yong;Kim, Dae-Young;Kim, Heon Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.104-112
    • /
    • 2014
  • Generally, numerical approaches of evaluation for vehicle seat comfort have been studied without considering time-dependent characteristics and the only seating moment have been considered in seat design. However, the comfort not only at the seating moment but also in the long-term should be evaluated because the passengers are sitting repeatedly on the seat to drive the vehicle for hours. So, the aim of this paper is to carry out a quantitative evaluation of the time-dependent mechanical characteristics of seat foams and to suggest a process for predicting the viscoelastic deformation of seat foam in response to long-term driving. To characterize the seat materials, uniaxial compression and tension tests were carried out for the seat foam and stress relaxation tests were performed for evaluating the viscoelastic behavior of the seat foam. A unit solid element model was used to verify the reliability of the material model with respect to the compression behavior of the seat foam. It is not straightforward to evaluate the time-dependent compression of foams using the explicit solver because the viscoelastic material model is limited. To use the explicit solver, the material model must be modified using stress-degradation data. Normalized stress relaxation moduli were added to the stress-strain curves obtained under static conditions to achieve a time-dependent set of stress-strain relations that were compatible with the implicit solver. There was good agreement between the analysis results and experimental data.

Numerical analysis of pre-reinforced zones in tunnel considering the time-dependent grouting performance (터널 사전보강영역의 경시효과를 고려한 수치해석 기법에 관한 연구)

  • Song, Ki-Il;Kim, Joo-Won;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2007
  • Auxiliary support systems such as the reinforced protective umbrella method have been applied before tunnel excavation to increase ground stiffness and to prevent the large deformation. However, determination procedure of geotechnical parameters along the construction sequence contains various errors. This study suggests a method to characterize the time-dependent behavior of pre-reinforced zones around the tunnel using elastic waves. Experimental results show that shear strength as well as elastic wave velocities increase with the curing time. Shear strength and strength parameters can be uniquely correlated to elastic wave velocities. Obtained results from the laboratory tests are applied to numerical simulation of tunnel considering its construction sequences. Based on numerical analysis, initial installation part of pre-reinforcement and portal of tunnel are critical for tunnel stability. Result of the time-dependent condition is similar to the results of for $1{\sim}2$ days of the constant time conditions. Finally, suggested simple analysis method combining experimental and numerical procedure which considering time-dependent behavior of pre-reinforced zone on tunnel would provide reliable and reasonable design and analysis for tunnel.

  • PDF

Seismic Performance Evaluation of RC Bridge Piers Using Time-dependent Element (시간종속 요소를 이용한 철근콘크리트교량 교각의 내진 성능 평가)

  • Lee, Do Hyung;Jeon, Jeong-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.237-246
    • /
    • 2006
  • In order to evaluate the seismic performance of damaged reinforced concrete members, particularly bridge piers, an inelastic time-dependent element is proposed. The proposed element enables increased characteristics due to structural intervention(i.e., repair or retrofitting) to be accurately reflected to the degraded strength and stiffness of the members. The inelastic time-dependent element having both birth and death time can freely be activated within the user-defined time intervals during static and dynamic time-history analysis. Comparative studies are carried out for reinforced concrete bridge piers that are repaired and retrofitted. Analytical predictions using the developed element show reasonable correlation with experimental results. Also conducted is a nonlinear time-history analysis of a reinforced concrete bridge under multiple earthquakes. The comparative analytical results prove the validation of current development. In all, it is concluded that the present element is capable of providing salient features for the healthy evaluation of seismic performance and hence seismic stability assessment of RC bridge piers being repaired and retrofitted.

Finite Element Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 유한요소 거동해석)

  • 강병수;주영태;신동훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.463-468
    • /
    • 2003
  • A finite element formulation to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The total potential energy of the flexural composite member is minimized to derive the time dependent finite element equilibrium equation. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The numerical analysis with considering the variation of concrete elastic modulus are performed to investigate the effect of it on the early-age behavior of composite structures. The one dimensional finite element analysis results are compared with the analytical method based on the sectional analysis. Close agreement is observed among the two methods.

  • PDF

Finite-element modeling and analysis of time-dependent thermomechanical distortion of optical sheets in a LCD module

  • Lee, Jae-Won;Hwang, Hak-Mo;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1436-1441
    • /
    • 2006
  • Each type of optical sheets in a LCD module experiences a characteristic behavior for thermal loading and unloading. During thermal cycling, a polymeric behavior is reversible and recyclable, depending on a material stiffness critically affected by temperature and time. Some critical issues on temperature- and time-dependent themomechanical deformation of the polymeric sheet are addressed by finite-element thermal results, followed by structural simulation results in this study.

  • PDF

Changes in Phosphatase Activity of the Mouse Uterus during the Estrous Cycle (發情週期에 EK른 생쥐子宮의 Phosphatase 活性의 變化에 관하여)

  • Kim, Moon-Kyoo;Kim, Sung-Rye;Cho, Wan-Kyoo
    • The Korean Journal of Zoology
    • /
    • v.23 no.2
    • /
    • pp.61-68
    • /
    • 1980
  • Quantitative analysis of the activities of transport ATPases as well as alkaline phosphatase of the mouse uterus was carried out during the estrous cycle. Even though the proportional patterns of the enzyme activities were similar each another between the stages of estrous cycle, the absolute activities of the enzymes except $K^+$-dependent and $Na^+$, $K^+$-activated ATPases at the time of estrus were significantly (p<0.025) higher than that at any other time of the estrous cycle. That is, the activities of $K^+$-dependent and $Na^+$, $K^+$-activated ATPases were negligible during the period of time from diestrus to estrus while the little activities (0.04 $\\sim$ 0.05$\\mu$M/mg protein/hr in average, $6\\sim7$% of the total enzyme activity) of these enzymes appeared at the time of metaestrus. On the other hand, at the time of estrus, the activities of $Mg^++$-dependent phosphatase, transport ATPase and alkaline phosphatase were rapidly and tremendously increased to be 0.69 (35%), 0.42 (21%) and 1.58 (79%), respectively. The activity of alkaline phosphatase was in the range of 0.60 $\\sim$ 1.58 (79 $\\sim$ 90%) and predominant throughout the estrous cycle. The activity of $Mg^++$-dependent alkaline phosphatase was estimated as 12 $\\sim$ 16% of the total enzyme activity. Therefore, it is assumed likely that $K^+$-dependent and $Na^+$, $K^+$-activated ATPases are not the main factors to control the fluid accumulation at the time of estrus, but may be the factors to reabsorb the luminal fluid into the uterine epithelium at the time of metaestrus, and that $Mg^++$-dependent phosphatase, transport ATPase and alkaline phosphatase must be closely involved in the secretion of luminal fluid from the epithelial cells of the mouse uterus.

  • PDF

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.