• 제목/요약/키워드: Time-Varying System

검색결과 1,471건 처리시간 0.032초

초음파를 이용한 해저면 영상화 기법에서의 Gain Control에 관한 연구 (A Study on the Gain Control for Underwater Side Scan Sonar System)

  • 이철원;오영석;우종식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.216-221
    • /
    • 2000
  • This paper deals with the Gain Control in the processing of the underwater acoustic image obtained from side scan sonar(SSS) system. At first, this paper describes the principles of SSS that is a surveying equipment for the underground of the rivers or dams as well as sea floor. Then this paper analyzes the cause and effects of the time varying intensity from the view point of transmission loss and beam pattern. At last, the time varying gain filter that is adopted by the towfish is introduced.

  • PDF

가변정도제어계의 Reaching Phase 및 chattering 현상의 제거에 관한 연구 (A Study of Method for Removing Reaching Phase and Chattering Phenomenon in Variable Structure Control Systems)

  • 주기호;송명현;박귀태;천희영
    • 대한전기학회논문지
    • /
    • 제36권1호
    • /
    • pp.52-57
    • /
    • 1987
  • In this paper, a methodology is developed to remove the reaching phase and the high frequency chattering phenomenon which are the common drawbacks of variable structrue control (VSC) system. A time varying switching surface is proposed to achieve sliding motion during the entire control process and a continuous control law whose terms are continuous functions inside a boundary layer neighbouring the time varying switching surface is developed to remove the high frequency chattering phenomenon of VSC. The methodology developed in this paper is applied to the 2'nd order time varying system and the simulated results are compared with those of typical VSC methodology.

  • PDF

Design of Fuzzy IMM Algorithm based on Basis Sub-models and Time-varying Mode Transition Probabilities

  • Kim Hyun-Sik;Chun Seung-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.559-566
    • /
    • 2006
  • In the real system application, the interacting multiple model (IMM) based algorithm requires less computing resources as well as a good performance with respect to the various target maneuverings. And it further requires an easy design procedure in terms of its structures and parameters. To solve these problems, a fuzzy interacting multiple model (FIMM) algorithm, which is based on the basis sub-models defined by considering the maneuvering property and the time-varying mode transition probabilities designed by using the mode probabilities as inputs of a fuzzy decision maker, is proposed. To verify the performance of the proposed algorithm, airborne target tracking is performed. Simulation results show that the FIMM algorithm solves all problems in the real system application of the IMM based algorithm.

신경망 학습 변수의 시변 제어에 관한 연구 (A study on time-varying control of learning parameters in neural networks)

  • 박종철;원상철;최한고
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.201-204
    • /
    • 2000
  • This paper describes a study on the time-varying control of parameters in learning of the neural network. Elman recurrent neural network (RNN) is used to implement the control of parameters. The parameters of learning and momentum rates In the error backpropagation algorithm ate updated at every iteration using fuzzy rules based on performance index. In addition, the gain and slope of the neuron's activation function are also considered time-varying parameters. These function parameters are updated using the gradient descent algorithm. Simulation results show that the auto-tuned learning algorithm results in faster convergence and lower system error than regular backpropagation in the system identification.

  • PDF

시 변화 물림 강성도와 베어링 유연도를 고려한 기어-로터의 위험 속도 시뮬레이션 (A Simulation for the Critical Speeds of a Geared Rotor System with Time Varying Mesh Stiffnesses and Bearing Flexibilities.)

  • 최명진
    • 한국시뮬레이션학회논문지
    • /
    • 제8권3호
    • /
    • pp.39-48
    • /
    • 1999
  • A finite element model of geared rotor system with flexible bearings were used to simulate the critical speeds and to investigate the effects of bearing coefficients on the dynamic behaviors of the systems. The finite element model includes the effects of tooth mesh stiffness, gyroscopic moment, rotary inertia, shear, and torque of the shaft. The gear mesh was modelled as a pair of rigid disks connected by a spring of time varying stiffness. The time varying mesh stiffness results in the abrupt change of the critical speeds of spur geared systems. As the bearing stiffness increases, critical speeds increase rapidly in case of stiff shafts, compared with flexible shafts.

  • PDF

Robust adaptive control of linear time-varying systems which are not necessarily slowly varying

  • Song, Chan-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1424-1429
    • /
    • 1990
  • This paper presents an indirect adaptive control scheme for discrete linear systems whose parameters are not necessrily slowly varying. It is assumed that system parameters are modelled as linear combinations of known bounded functions with unknown constant coefficients. Unknown coefficients are estimated using a recursive least squares algorithm with a dead zone and a forgetting factor. A control law which makes the estimated model exponentially stable is constructed. With this control law and a state observer, all based on the parameter estimates, it is shown that the resulting closed-loop system is globally stable and robust to bounded external disturbances and small unmodelled plant uncertainties.

  • PDF

H filter design for offshore platforms via sampled-data measurements

  • Kazemy, Ali
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.187-194
    • /
    • 2018
  • This paper focuses on the $H_{\infty}$ filter design problem for offshore steel jacket platforms. Its objective is to design a full-order state observer for offshore platforms in presence of unknown disturbances. To make the method more practical, it is assumed that the measured variables are available at discrete-time instants with time-varying sampling time intervals. By modelling the sampling intervals as a bounded time-varying delay, the estimation error system is expressed as a time-delay system. As a result, the addressed problem can be transformed to the problem of stability of dynamic error between the system and the state estimator. Then, based on the Lyapunov-Krasovskii Functional (LKF), a stability criterion is obtained in the form of Linear Matrix Inequalities (LMIs). According to the stability criterion, a sufficient condition on designing the state estimator gain is obtained. In the end, the proposed method is applied to an offshore platform to show its effectiveness.

Model Reference Adaptive Control of a Time-Varying Parabolic System

  • Hong, Keum-Shik;Yang, Kyung-Jinn;Kang, Dong-Hunn
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.168-176
    • /
    • 2000
  • Related to the error dynamics of an adaptive system, averaging theorems are developed for coupled differential equations which consist of ordinary differential equations and a parabolic partial differential equation. The results are then applied to the convergence analysis of the parameter estimate errors in the model reference adaptive control of a nonautonomous parabolic partial differential equation with lowly time-varying parameters.

  • PDF

로프 길이 변화를 고려한 크레인의 흔들림 제어에 관한 연구;Gain-Scheduling 기법에 의한 제어기 설계 (A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach)

  • 김영완;김영복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.631-636
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the experiment result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

Time-Varying Hemodynamic Characteristics Simulation using Computerized Mock Circulatory Loop System with Servo Flow Regulator

  • Moon, Youngjin;Son, Kuk Hui;Choi, Jaesoon
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권6호
    • /
    • pp.264-270
    • /
    • 2015
  • A mock circulatory loop system has been developed to construct a simulator for trainees in cardiopulmonary bypass systems or to simulate a test environment for cardiac-assist devices. This paper proposes a computerized mock circulatory loop system whose node is modularized by using a servo control flow regulator to simulate dynamic change of the hemodynamic status. To observe the effect of time-varying resistance, one with hemodynamic properties, the proposed system replicates the planned cross-sectional areas of the outlet of a ventricular assist device in terms of voltage input of a servo valve. The experiment is performed (1) for steady-input commands of selected area sizes and (2) for dynamic commands such as monotonous increase and decrease, and oscillatory functions of the voltage input, and a computer program based on LabVIEW (National Instruments, Austin, USA) processes every measured data and control command to the servo valve. The results show that the pressure and flow at the target points with respect to time-varying resistance match intuitive estimation: the pressure at the outlet and the pressure drop between both sides of the valve increased and the flow at the outlet decreased for increased resistance.