• Title/Summary/Keyword: Time-Sequential Analysis

Search Result 323, Processing Time 0.03 seconds

Research of Integrated System Design Process for Minimize Iteration Time of System Design Activities (시스템 설계 업무 반복시간을 최소화하는 통합된 시스템 설계 프로세스 연구)

  • Kim Jin-Hoon;Park Young-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.31-36
    • /
    • 2004
  • This paper will describe design process and its results that are minimized unaddressed feature of product development processes. This process provides integrated system design process by context analysis of EIA 632 standard process, interface definition from activity decomposition, integration of related activities, and definition of concurrency & sequential activities flow. This process and method application will contribute to minimize time loss that is emerged from activities iteration by not definitely definition of activities interface.

Design Optimization of Over-slam Bumper for Moving Part Over-travel (무빙부품의 과다 닫힘 방지를 위한 오버슬램 범퍼 최적설계)

  • Choi, Yeonwook;Ki, Wonyong;Lee, Jonghyun;Heo, Seung-Jin;Rhie, Chulhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.66-72
    • /
    • 2014
  • A kinematic analysis method has been used as analysis method for dynamic behavior of moving parts of vehicle, especially hood part. Such analysis method, however, has its limitations in terms of design technology, including, over travel of hood that occurs due to lack of considerations of compliance characteristics, such as flexible components of hood's weather strip and over slam bumper. Therefore, it is necessary to develop a modeling which reflects compliance of flexible components of hood and elastic characteristics of panel for improvement of design process. In this thesis, a finite element method as mentioned earlier, is developed to represent over travel of hood. Also optimization process applying sequential approximate optimization is suggested to prevent over travel. The over travel analysis method and optimization process, which are developed through the research, would make it possible to design with high quality and credibility. Furthermore, it is expected that the time for design would be reduced and the design quality also improved.

An Efficient Solution Method to MDO Problems in Sequential and Parallel Computing Environments (순차 및 병렬처리 환경에서 효율적인 다분야통합최적설계 문제해결 방법)

  • Lee, Se-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.236-245
    • /
    • 2011
  • Many researchers have recently studied multi-level formulation strategies to solve the MDO problems and they basically distributed the coupling compatibilities across all disciplines, while single-level formulations concentrate all the controls at the system-level. In addition, approximation techniques became remedies for computationally expensive analyses and simulations. This paper studies comparisons of the MDO methods with respect to computing performance considering both conventional sequential and modem distributed/parallel processing environments. The comparisons show Individual Disciplinary Feasible (IDF) formulation is the most efficient for sequential processing and IDF with approximation (IDFa) is the most efficient for parallel processing. Results incorporating to popular design examples show this finding. The author suggests design engineers should firstly choose IDF formulation to solve MDO problems because of its simplicity of implementation and not-bad performance. A single drawback of IDF is requiring more memory for local design variables and coupling variables. Adding cheap memories can save engineers valuable time and effort for complicated multi-level formulations and let them free out of no solution headache of Multi-Disciplinary Analysis (MDA) of the Multi-Disciplinary Feasible (MDF) formulation.

Determination of Object Similarity Closure Using Shared Neighborhood Connectivity

  • Radhakrishnan, Palanikumar;Arokiasamy, Clementking
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.3
    • /
    • pp.41-44
    • /
    • 2014
  • Sequential object analysis are playing vital role in real time application in computer vision and object detections.Measuring the similarity in two images are very important issue any authentication activities with how best to compare two independent images. Identification of similarities of two or more sequential images is also the important in respect to moving of neighborhoods pixels. In our study we introduce the morphological and shared near neighborhoods concept which produces a sufficient results of comparing the two images with objects. Considering the each pixel compare with 8-connectivity pixels of second image. For consider the pixels we expect the noise removed images are to be considered, so we apply the morphological transformations such as opening, closing with erosion and dilations. RGB of pixel values are compared for the two sequential images if it is similar we include the pixels in the resultant image otherwise ignore the pixels. All un-similar pixels are identified and ignored which produces the similarity of two independent images. The results are produced from the images with objects and gray levels. It produces the expected results from our process.

Training HMM Structure and Parameters with Genetic Algorithm and Harmony Search Algorithm

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.109-114
    • /
    • 2012
  • In this paper, we utilize training strategy of hidden Markov model (HMM) to use in versatile issues such as classification of time-series sequential data such as electric transient disturbance problem in power system. For this, an automatic means of optimizing HMMs would be highly desirable, but it raises important issues: model interpretation and complexity control. With this in mind, we explore the possibility of using genetic algorithm (GA) and harmony search (HS) algorithm for optimizing the HMM. GA is flexible to allow incorporating other methods, such as Baum-Welch, within their cycle. Furthermore, operators that alter the structure of HMMs can be designed to simple structures. HS algorithm with parameter-setting free technique is proper for optimizing the parameters of HMM. HS algorithm is flexible so as to allow the elimination of requiring tedious parameter assigning efforts. In this paper, a sequential data analysis simulation is illustrated, and the optimized-HMMs are evaluated. The optimized HMM was capable of classifying a sequential data set for testing compared with the normal HMM.

Design and Implementation of a USN Middleware for Context-Aware and Sensor Stream Mining

  • Jin, Cheng-Hao;Lee, Yang-Koo;Lee, Seong-Ho;Yun, Un-il;Ryu, Keun-Ho
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.127-133
    • /
    • 2011
  • Recently, with the advances in sensor techniques and net work computing, Ubiquitous Sensor Network (USN) has been received a lot of attentions from various communities. The sensor nodes distributed in the sensor network tend to continuously generate a large amount of data, which is called stream data. Sensor stream data arrives in an online manner so that it is characterized as high-speed, real-time and unbounded and it requires fast data processing to get the up-to-date results. The data stream has many application domains such as traffic analysis, physical distribution, U-healthcare and so on. Therefore, there is an overwhelming need of a USN middleware for processing such online stream data to provide corresponding services to diverse applications. In this paper, we propose a novel USN middleware which can provide users both context-aware service and meaningful sequential patterns. Our proposed USN middleware is mainly focused on location based applications which use stream location data. We also show the implementation of our proposed USN middleware. By using the proposed USN middleware, we can save the developing cost of providing context aware services and stream sequential patterns mainly in location based applications.

Fault Detection of Small Turbojet Engine for UAV Using Unscented Kalman Filter and Sequential Probability Ratio Test (무향칼만필터와 연속확률비 평가를 이용한 무인기용 소형제트엔진의 결함탐지)

  • Han, Dong Ju
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-29
    • /
    • 2017
  • A study is performed for the effective detection method of a fault which is occurred during operation in a small turbojet engine with non-linear characteristics used by unmanned air vehicle. For this study the non-linear dynamic model of the engine is derived from transient thermodynamic cycle analysis. Also for inducing real operation conditions the controller is developed associated with unscented Kalman filter to estimate noises. Sequential probability ratio test is introduced as a real time method to detect a fault which is manipulated for simulation as a malfunction of rotational speed sensor contaminated by large amount of noise. The method applied to the fault detection during operation verifies its effectiveness and high feasibility by showing good and definite decision performances of the fault.

Sequential optimization for pressure management in water distribution networks

  • Malvin S. Marlim;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.169-169
    • /
    • 2023
  • Most distributed water is not used effectively due to water loss occurring in pipe networks. These water losses are caused by leakage, typically due to high water pressure to ensure adequate water supply. High water pressure can cause the pipe to burst or develop leaks over time, particularly in an aging network. In order to reduce the amount of leakage and ensure proper water distribution, it is important to apply pressure management. Pressure management aims to maintain a steady and uniform pressure level throughout the network, which can be achieved through various operational schemes. The schemes include: (1) installing a variable speed pump (VSP), (2) introducing district metered area (DMA), and (3) operating pressure-reducing valves (PRV). Applying these approaches requires consideration of various hydraulic, economic, and environmental aspects. Due to the different functions of these approaches and related components, an all-together optimization of these schemes is a complicated task. In order to reduce the optimization complexity, this study recommends a sequential optimization method. With three network operation schemes considered (i.e., VSP, DMA, and PRV), the method explores all the possible combinations of pressure management paths. Through sequential optimization, the best pressure management path can be determined using a multiple-criteria decision analysis (MCDA) to weigh in factors of cost savings, investment, pressure uniformity, and CO2 emissions. Additionally, the contribution of each scheme to pressure management was also described in the application results.

  • PDF

RSP-DS: Real Time Sequential Patterns Analysis in Data Streams (RSP-DS: 데이터 스트림에서의 실시간 순차 패턴 분석)

  • Shin Jae-Jyn;Kim Ho-Seok;Kim Kyoung-Bae;Bae Hae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1118-1130
    • /
    • 2006
  • Existed pattern analysis algorithms in data streams environment have researched performance improvement and effective memory usage. But when new data streams come, existed pattern analysis algorithms have to analyze patterns again and have to generate pattern tree again. This approach needs many calculations in real situation that needs real time pattern analysis. This paper proposes a method that continuously analyzes patterns of incoming data streams in real time. This method analyzes patterns fast, and thereafter obtains real time patterns by updating previously analyzed patterns. The incoming data streams are divided into several sequences based on time based window. Informations of the sequences are inputted into a hash table. When the number of the sequences are over predefined bound, patterns are analyzed from the hash table. The patterns form a pattern tree, and later created new patterns update the pattern tree. In this way, real time patterns are always maintained in the pattern tree. During pattern analysis, suffixes of both new pattern and existed pattern in the tree can be same. Then a pointer is created from the new pattern to the existed pattern. This method reduce calculation time during duplicated pattern analysis. And old patterns in the tree are deleted easily by FIFO method. The advantage of our algorithm is proved by performance comparison with existed method, MILE, in a condition that pattern is changed continuously. And we look around performance variation by changing several variable in the algorithm.

  • PDF

Structured Analysis of SNS for Development of Production Inventory System Fitted to Minor Enterprise (중소기업에 적합한 생산재고관리 시스템 개발을 위한 SNS 의 구조적 분석)

  • Jeon, Tae-Joon
    • IE interfaces
    • /
    • v.6 no.1
    • /
    • pp.47-54
    • /
    • 1993
  • Sequential Numbering System(SNS) is one of the production and inventory management system, which is more effective and practical to minor enterprises than Material Requirement Planning (MRP) system or Just-in-Time(JIT) system. The purpose of the paper is the structured analysis of SNS as the first phase of software development. Data Flow Diagram(DFD), Data Dictionary(DD), and Mini-Specs are used to analyze the system through the second level. The result can be exploited to SNS software design and programming.

  • PDF