• Title/Summary/Keyword: Time-Mean Drift Force

Search Result 17, Processing Time 0.023 seconds

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

On the Time-Mean Drift Force Acting on a Floating Offshore Structure in Wave (부유식 해양구조물에 작용하는 시감평균 파표류력에 관한 고찰)

  • 홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.8-18
    • /
    • 2002
  • Formulation of the far-field method for the prediction of time-mean hydrodynamic force and moment acting on a 3-D surface-piercing body in waves is reviewed. It is found that the inequality between the weight of the floating body and its buoyancy force permits the replacement of the fluid particles inside the control surface by the fluid particles outside the control surface. Under such circumstances, momentum exchanges across the control surface make the time-mean value of the time rate of the momentum of the fluid inside the control surface non-vanishing. It is a second-order quantity which is hard to calculate by the far-field method. The drift forces and moments on half-immersed ellipsoids are calculated by both the far-field method and the near-field method. The discrepancy between two numerical results is presented and discussed.

Reverse Drift Force of a Floating 2D-BBDB Wave Energy Absorber (2D-BBDB형 파 에너지 흡수장치 에 작용하는 음의 시간평균 파 표류력 해석)

  • Hong, Do-Chun;Hong, Sa-Young;Hong, Seok-Won;Kim, Hyeon-Ju
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.187-191
    • /
    • 2003
  • The motion and time-mean drift force of a 2-D floating BBDB in waves are studied with and without taking account of fluctuating air pressure in the air chamber. It has been found numerically that the drift for a of the BBDB is in the reverse direction of propagation of the incident waves over specific frequency ranges as found by McCormick through his experiment work. The drift force is calculated by Pinkster's near-field method. Since Maruo's formula method for the drift force is always positive, Maruo's formula is only approximate and should be replaced by the correct near-field method.

  • PDF

A Far Field Solution of the Slowly Varying Drift Force on the Offshore Structure in Bichromatic Waves-Three Dimensional Problems

  • Lee, Sang-Moo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • A far field approximate solution of the slowly varying force on a 3 dimensional offshore structure in gravity ocean waves is presented. The first order potential, or at least the far field form of the Kochin function, of each frequency wave is assumed to be known. The momentum flux of the fluid domain is formulated to find the time variant force acting on the floating body in bichromatic waves. The second order difference frequency force is identified and extracted from the time variant force. The final solution is expressed as the circular integration of the product of Kochin functions. The limiting form of the slowly varying force is identical to the mean drift force. It shows that the slowly varying force components caused by the body disturbance potential can be evaluated at the far field.

Mean Drift Force Acting on a Floating OWC Wave Power Device (부유식 OWC 파력발전 챔버의 파 표류력해석)

  • HONG Do-Chun;HONG Sa-Young;HONG Seok-Won
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.373-376
    • /
    • 2002
  • The drift force acting on a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function. The drift forces as well as the chamber motions are calculated taking account of the air pressure in the chamber.

  • PDF

A Study on the Wave Drift Damping of a Moored Ship in Waves (파랑중 계류된 선박의 표류감쇠에 관한 연구)

  • 이호영;박홍식;신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2000
  • As the offshore oil fields are moved to the deep ocean, the oil production system of FPSO(Floating Production Storage and Offloading System) Type are constructed frequently these days. So, it is very important to estimate the drift motion and damping effects due to the drift motion simultaneously. The components of slow drift motion damping consist of viscous, wave radiation effect and wave drift damping. It is needed to estimate the wave drift damping more accurately than others. The wave drift damping signifies the time-rate of mean wave drift force on oscillating ship or ocean structure which constant speed. In order to calculate this, the 3-Dimensional panel method is employed with the translating and pulsating Green function in the frequency domain. The calculation is carried out for a Series 60 ($C_B$/=0.7) and the results are compared with other numerical ones.

  • PDF

Irregular frequency effects in the calculations of the drift forces

  • Liu, Yujie;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.97-109
    • /
    • 2019
  • Accurate calculation of the mean drift forces and moments is necessary when studying the higher order excitations on the floater in waves. When taking the time average of the second order forces and moments, the second order potential and motion diminish with only the first order terms remained. However, in the results of the first order forces or motions, the irregular frequency effects are often observed in higher frequencies, which will affect the accuracy of the calculation of the second order forces and moments. Therefore, we need to pay close attention to the irregular frequency effects in the mean drift forces. This paper will discuss about the irregular frequency effects in the calculations of the mean drift forces and validate our in-house program MDL Multi DYN using some examples which are known to have irregular frequency effects. Finally, we prove that it is necessary to remove the effects and demonstrate that the effectiveness of the formula and methods adopted in the development of our program.

A Study on Motion and Wave Drift Force of a BBDB Type OWC Wave Energy Device (BBDB형 진동수주 파력발전장치의 운동 및 파랑표류력 연구)

  • Kim Jin-Ha;Lew Jae-Moon;Hong Do-Chun;Hong Seok-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.22-28
    • /
    • 2006
  • The motion and wave drift forces of floating BBDB (backward-bent duct buoy) wave energy absorbers in regular waves are calculated, taking account of the oscillating surface-pressure due to the pressure drop in the air chamber above the oscillating water column, within the scope of the linear wave theory. A series of model tests has been conducted in order to order to verify the motion and time mean wave drift force reponses in regular waves at the ocean engineering basin, MOERI/KORDI. The pneumatic damping through an orifice-type duct for the BBDB wave energy device are deducted from experimental research. Numerical simulation for motion and drift force responses of the BBDB wave energy device, considering pneumatic damping coefficients, has been carried out, and the results are compared with those of model tests.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Nonlinear Wave Transformation and Dynamic Behaviors of Semi-Submerged Air-Chamber Floating Breakwater (반잠수압기형부방파제의 비선형파랑변형 및 동적거동에 관한 연구)

  • Kim, D.S.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • Generally, it is pointed out that a nonlinear analysis is needed to estimate accurately the water surface fluctuation and dynamic responses of a floating structure in case of large wave reflection. In this study, a frequency-domain method is applied and newly developed to analyze the nonlinear characteristics of the air-chamber floating breakwater. The air-chamber floating breakwater in this study can control well the wave transformation, motions of the structure and its natural frequency by adjusting the air depth in the chamber. Experiments are carried out to verify the numerical results. It is appeared that the mean water level is setup in the anti-node and setdown in the node, while the nonlinearity in wave profile is larger in the node than in the anti-node. Because of vertical mooring system, the sway, especially the time-independent nonlinear component, plays predominant role in the motion. On the other hand, the time-dependent component, as well as the time-independent one to the tensile force of mooring line contributes greatly, and the time averaged value presents tensional force oriented to the onshore side due drift force.

  • PDF