• Title/Summary/Keyword: Time-Domain Analysis

Search Result 2,339, Processing Time 0.032 seconds

Fault Analysis of the Wind Turbine Drive Train in the Quefrency Region (큐프렌시 영역 해석을 통한 드라이브 트레인 결함 분석)

  • Park, Yong-Hui;Shi, Wei;Park, Hyun-Chul
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.5-13
    • /
    • 2013
  • In the previous research, dynamic results have been analyzed in the time and frequency regions. Time and frequency region can be transformed by the Fourier transform. This transform is very useful about analyzing system behaviors. However, because of coupling, it cannot give clear results in the real system including lots of defects. In this paper, we introduced the analysis based on quefrency region to represent physical means clearly from complicated results. We simulated the drive train system which has defects, and compared between frequency and quefrency region to show its excellence. To do this process, We established mathematical model. The equation of motion was derived by the Lagrange equation and constraint equations. The constraint equation included relationships about gear mesh, flexibility of shaft. About numerical analysis, the Newmark beta method was used to get results. And FFT (Fast Fourier Transform) which converts results from time domain to frequency, qufrequency was used.

Nonstationary Response Analysis of Offshore Guyed Tower for Strong Earthquakes (비정상과정의 강한 지진에 대한 해양 가이드 타워의 동력학적 응답해석)

  • 류정선
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.127-137
    • /
    • 1992
  • A method for nonstationary response analysis of an offshore guyed tower subjected to earthquake loading is presented. The nonstationarity of the earthquake excitation is modeled by imposing a time varying envelope function onto a stationary random model. By taking the envelope function and the auto-correlation function of ground acceleration in terms of complex exponential functions of time, an analytical procedure is developed for computing time varying variances of the tower response. Example analysis indicates that the maximum responses estimated by considering nonstationary effect properly are significantly less than those obtained by the conventional frequency domain analysis method based upon the stationary assumption.

  • PDF

The Ultimate Strength Analysis of the Welded Plate Elements having Resiual Stresses and Strains (잔류응력 및 변형을 고려한 용접평판부재의 최종강도 해석)

  • 김병일
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.331-340
    • /
    • 2000
  • For the rational and economic design of the structural elements of ships which is built using welding, the ultimate strength analyses of the plates having initial imperfections, such as welding residual stresses and strains, are needful. The welding deformation usually relied on approximative equations or based on expert's experience. But in this paper, for the thermal elasto-plastic analysis of plates, the finite element analysis was performed, based on initial strain method. In formulating the incremental analysis, unbalanced force terns were included. In the plastic domain during the incremental process, the 2nd order terns stress increment and yield stress increment were considered, so that time increment could be controlled for a more stable solution. The ultimate strength analysis program of the plates having initial imperfections was made. The ultimate strength analysis was carried out based on the results of the welding deformations of this paper. In the ultimate strength analysis the Rayleigh-Ritz method based on the minimum potential theory was used.

  • PDF

Transient Analysis of General Dispersive Media Using Laguerre Functions (라게르 함수를 이용한 일반적인 분산 매질의 시간 영역 해석)

  • Lee, Chang-Hwa;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1005-1011
    • /
    • 2011
  • In this paper, we present a marching-on-in-degree(MOD) finite difference method(FDM) based on the Helmholtz wave equation for analyzing transient electromagnetic responses in a general dispersive media. The two issues related to the finite difference approximation of the time derivatives and the time consuming convolution operations are handled analytically using the properties of the Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the flux densities, the permittivity with a finite sum of orthogonal Laguerre functions. Through this novel approach, not only the time variable can be decoupled analytically from the temporal variations but also the final computational form of the equations is transformed from finite difference time-domain(FDTD) to a finite difference formulation through a Galerkin testing. Representative numerical examples are presented for transient wave propagation in general Debye, Drude, and Lorentz dispersive medium.

A MOM-based algorithm for moving force identification: Part II - Experiment and comparative studies

  • Yu, Ling;Chan, Tommy H.T.;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.155-169
    • /
    • 2008
  • A MOM-based algorithm (MOMA) has been developed for moving force identification from dynamic responses of bridge in the companion paper. This paper further evaluates and investigates the properties of the developed MOMA by experiment in laboratory. A simply supported bridge model and a few vehicle models were designed and constructed in laboratory. A series of experiments have then been conducted for moving force identification. The bending moment and acceleration responses at several measurement stations of the bridge model are simultaneously measured when the model vehicle moves across the bridge deck at different speeds. In order to compare with the existing time domain method (TDM), the best method for moving force identification to date, a carefully comparative study scheme was planned and conducted, which includes considering the effect of a few main parameters, such as basis function terms, mode number involved in the identification calculation, measurement stations, executive CPU time, Nyquist fraction of digital filter, and two different solutions to the ill-posed system equation of moving force identification. It was observed that the MOMA has many good properties same as the TDM, but its CPU execution time is just less than one tenth of the TDM, which indicates an achievement in which the MOMA can be used directly for real-time analysis of moving force identification in field.

Dynamic Analysis for Mechanical Systems with Multi-Degree of Freedom under Base Excitation Using Relative Acceleration (상대 가속도를 이용한 기초 가진을 받는 다자유도 기계 시스템의 동적 해석)

  • Lee, Tae Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.36-41
    • /
    • 2020
  • Mechanical systems installed in transport devices, such as vehicles, airplanes, and ships, are mostly subject to translational accelerations at the joints during operations. This base acceleration excitation has a large influence on the performance of the system, therefore, its response must be well analyzed. However, the existing methods for dynamic analysis of structures have some limitations in use. This study presents a new numerical method using relative acceleration to solve these limitations. If the governing equation of motion is linear and the mass matrix, the damping matrix, and the stiffness matrix are constant over time in the finite element analysis, the proposed method can be applied to the transient behavior analysis and the harmonic response analysis of the structure. Because it is not necessary to introduce a virtual mass and the rigid body motions are removed from the analysis, it is possible to use not only the direct integration method in the time domain but also the mode superposition method to obtain the dynamic responses. This paper demonstrates with three examples how the present method is suitable for the dynamic analysis of a structure with multi-degree of freedom.

Development of Stress Based on Pore Pressure Model (응력 기반 간극수압 모델 개발)

  • Park, Du-Hee;Ahn, Jae-Kwang;Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.95-107
    • /
    • 2012
  • Even though the importance of predicting build-up of pore pressure under cyclic loading is recognized, effective stress analysis is rarely performed due to difficulties in selecting the parameters for the pore pressure model. In this paper, a new stress based numerical model for predicting pore pressure under cyclic loading is developed. The main strength of the model is that it is easy-to-use, requiring only the CSR-N curve in selecting the parameters. Another advantage of the model is that it can be used for any loading pattern and therefore can be implemented in an effective stress time-domain dynamic analysis code. The accuracy of the model is validated through its comparisons with measurements in literature and laboratory test data collected in Korea. Further comparisons with another stress based pore pressure model highlighted the superiority of the proposed model.

E-commerce data based Sentiment Analysis Model Implementation using Natural Language Processing Model (자연어처리 모델을 이용한 이커머스 데이터 기반 감성 분석 모델 구축)

  • Choi, Jun-Young;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.33-39
    • /
    • 2020
  • In the field of Natural Language Processing, Various research such as Translation, POS Tagging, Q&A, and Sentiment Analysis are globally being carried out. Sentiment Analysis shows high classification performance for English single-domain datasets by pretrained sentence embedding models. In this thesis, the classification performance is compared by Korean E-commerce online dataset with various domain attributes and 6 Neural-Net models are built as BOW (Bag Of Word), LSTM[1], Attention, CNN[2], ELMo[3], and BERT(KoBERT)[4]. It has been confirmed that the performance of pretrained sentence embedding models are higher than word embedding models. In addition, practical Neural-Net model composition is proposed after comparing classification performance on dataset with 17 categories. Furthermore, the way of compressing sentence embedding model is mentioned as future work, considering inference time against model capacity on real-time service.

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.311-314
    • /
    • 2006
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely soft cohesive soil is applied to the self-propelled miner. The hydrodynamic forces and moments are included in the dynamic models of vehicle and lifting pipe system. Hinged and fixed constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-b method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

  • PDF

Comparing the dynamic behavior of a hospital-type structure with fixed and isolated base

  • Nasery, Mohammad Manzoor;Ergun, Mustafa;Ates, Sevket;Husem, Metin
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.657-671
    • /
    • 2015
  • The level of ductility is determined by depending on the intended use of the building, the region's seismic characteristics and the type of structural system when buildings are planned by engineers. Major portion of seismic energy is intended to be consumed in the plastic zone in structural systems of high ductility, so the occurrence of damages in load bearing and non-load bearing structural elements is accepted in planning stage under severe earthquakes. However, these damages must be limited among specific values in order not to endanger buildings in terms of the bearing capacity. Isolators placed between the basement and upper structure make buildings behave elastically by reducing the effects of seismic loads and improving seismic performance of building significantly. Thus, damages can be limited among desired values. In this study, the effectiveness of seismic isolation is investigated on both fixed based and seismic isolated models of a hospital building with high ductility level with regard to lateral displacements, internal forces, structural periods and cost of the building. Layered rubber bearings are interposed between the base of the structure and foundation. Earthquake analysis of the building are performed using earthquake records in time domain (Kocaeli, Loma Prieta and Landers). Results obtained from three-dimensional finite element models are presented by graphs and tables in detail. That seismic isolation reduces significantly the destructive effects of earthquakes on structures is seen from the results obtained by seismic analysis.