• Title/Summary/Keyword: Time-Domain Analysis

Search Result 2,339, Processing Time 0.028 seconds

Advances in the design of high-rise structures by the wind tunnel procedure: Conceptual framework

  • Simiu, Emil;Yeo, DongHun
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.489-503
    • /
    • 2015
  • This paper surveys and complements contributions by the National Institute of Standards and Technology to techniques ensuring that the wind tunnel procedure for the design of high-rise structures is based on sound methods and allows unambiguous inter-laboratory comparisons. Developments that enabled substantial advances in these techniques include: Instrumentation for simultaneously measuring pressures at multiple taps; time-domain analysis methods for estimating directional dynamic effects; creation of large simulated extreme directional wind speed data sets; non-parametric methods for estimating mean recurrence intervals (MRIs) of Demand-to-Capacity Indexes (DCIs); and member sizing based on peak DCIs with specified MRIs. To implement these advances changes are needed in the traditional division of tasks between wind and structural engineers. Wind engineers should provide large sets of directional wind speeds, pressure coefficient time series, and estimates of uncertainties in wind speeds and pressure coefficients. Structural engineers should perform the dynamic analyses, estimates of MRIs of wind effects, sensitivity studies, and iterative sizing of structural members. The procedure is transparent, eliminates guesswork inherent in frequency domain methods and due to the lack of pressure measurements, and enables structural engineers to be in full control of the structural design for wind.

PPG Filtering Method for Respiration Measurement in U-Health Care System (U-Health Care 환경에서 호흡측정을 위한 PPG 최적필터기술)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Nam, Ki-Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.95-101
    • /
    • 2008
  • This research is to develop PPG filtering method for respiration measurement in U-Health Care system. Respiration rate was determined by filtering PPG and analyzing its spectrum. Optimal filter of PPG has been selected to get respiration by testing 120 sets of experiment data using 700 filtering cases. As a result, 2nd order Bessel-filter that used band-pass cutoff frequency at 0.175~0.4Hz with second order was good at developing respiration signal. Respiration signal in time domain could be continuously analyzed by converting frequency domain using spectrum analysis. 24 seconds has been found to be optimal time duration of collecting PPG data for determining respiration. Therefore, this study was successful of getting not only heart activity but also respiration by only PPG. Minimal invasive measurement obtaining multi-bio information by one sensor can be expected to apply to U-Health Care and human computer interaction.

Time Domain Analysis of Dispersion Characteristics of Pulse for MMIC Design (초고주파 집적회로 설계를 위한 펄스의 시간영역 분산 특성 해석)

  • Kim, Gi-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1755-1760
    • /
    • 2013
  • In this paper, when the pulses propagate on a uniform microstrip line, the distortion of pulse signal caused by dispersion is investigated in time domain. We analyzed dispersion characteristics according to dielectric constant and structure of transmission line, and compared propagating characteristics for square and gaussian pulse according to pulse width, pulse amplitude, and propagation velocity. The results of this paper are compatible to the trade-off determination of relative permittivity, substrate height, strip width and pulse width of signal pulse when a design of MIC and MMIC is necessary.

Assesment of Heart Rate Variability by Integral Pulse Frequency Modulation Model (IPFM 모델의 해석을 통한 심박변이도 해석)

  • Park, Sang-Eun;Kim, Jeong-Hwan;Jeung, Gyeo-Wun;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.799-804
    • /
    • 2015
  • This study aims at the new analysis of heart beat fluctuations by applying physiological Heart Rate Variability Model with representing the cardiac control system in sympathetic and parasympathetic-coupling oscillator constants, Cs and Cp. To find the effects of coupling constants on the beat-to-beat fluctuations, Integral Pulse Frequency Modulation (IPFM) model is adopted to generate the time series data of ECG R-peaks and represent them by poincaré scattergram plot in the time domain and HRV in the frequency domain, respectively. The actual poincaré plots and HRV spectrum are also analyzed by acquiring the experimental data from the subjects exposed to the emotional-stress invoking environment and the function of the coupling constants are verified in terms of antagonism in sympathetic and parasympathetic activity.

Study for Visualization of Rotating Sound Source Using Microphone Array (마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구)

  • Rhee, Wook;Park, Sung;Lee, Ja-Hyung;Kim, Jai-Moo;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.565-573
    • /
    • 2006
  • Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. The purpose of this research is development of beamforming technique can be applied to the rotor noise source identification. For the do-Dopplerization and reconstruction of emitted sound wave, Forward Propagation Method is applied to the time domain beamforming technique. And validation test were performed using rotating sound source constructed by bended pipe and horn driver. In the validation test using sinusoidal sound wave, sufficient performance of signal processing can be seen, and the effect of measuring duration for accuracy was compared. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies and collective pitch angle, in hover condition.

Numerical and experimental analysis of hydroelastic responses of a high-speed trimaran in oblique irregular waves

  • Chen, Zhanyang;Gui, Hongbin;Dong, Pingsha;Yu, Changli
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.409-421
    • /
    • 2019
  • Investigation of hydroelastic responses of high-speed vessels in irregular sea state is of major interest in naval applications. A three dimensional nonlinear time-domain hydroelastic method in oblique irregular waves is developed, in which the nonlinear hydrostatic restoring force caused by instantaneous wetted surface and slamming force are considered. In order to solve the two technical problems caused by irregular sea state, the time-domain retardation function and Proportional, Integral and Derivative (PID) autopilot model are applied respectively. Besides, segmented model tests of a high-speed trimaran in oblique waves are performed. An oblique wave testing system for trimarans is designed and assembled. The measured results of main hull and cross-decks are analyzed, and the differences in distribution of load responses between trimarans and monohull ships are discussed. Finally, from the comparisons, it is confirmed that the present concept for dealing with nonlinear hydroelastic responses of ships in oblique irregular waves is reliable and accurate.

Applied 2D equivalent linear program to analyze seismic ground motion: Real case study and parametric investigations

  • Soltani, Navid;Bagheripour, Mohammad Hossein
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Seismic ground response evaluation is one of the main issues in geotechnical earthquake engineering. These analyses are subsequently divided into one-, two- and three-dimensional methods, and each of which can perform in time or frequency domain. In this study, a novel approach is proposed to assess the seismic site response using two-dimensional transfer functions in frequency domain analysis. Using the proposed formulation, a program is written in MATLAB environment and then promoted utilizing the equivalent linear approach. The accuracy of the written program is evaluated by comparing the obtained results with those of actual recorded data in the Gilroy region during Loma Prieta (1989) and Coyote Lake (1979) earthquakes. In order to precise comparison, acceleration time histories, Fourier amplitude spectra and acceleration response spectra diagrams of calculated and recorded data are presented. The proposed 2D transfer function diagrams are also obtained using mentioned earthquakes which show the amount of amplification or attenuation of the input motion at different frequencies while passing through the soil layer. The results of the proposed method confirm its accuracy and efficiency to evaluate ground motion during earthquakes using two-dimensional model. Then, studies on irregular topographies are carried out, and diagrams of amplification factors are shown.

Ground Motion Simulation of Scenario Earthquakes in the Nakdonggang Delta Region using a Broadband Hybrid Method and Site Response Analysis (광대역 하이브리드 기법과 지반응답 해석을 통한 낙동강 삼각주 지역의 가상지진 지반운동 시뮬레이션)

  • Kim, Jaehwi;Oh, Junsu;Jeong, Seokho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.233-247
    • /
    • 2024
  • The damage to structures during an earthquake can be varied depending on the frequency characteristics of seismic waves and the geological properties of the ground. Therefore, considering such attributes in the design ground motions is crucial. The Korean seismic design standard (KDS 17 10 00) provides design response spectra for various ground classifications. If required for time-domain analysis, ground motion time series can be either selected and adjusted from motions recorded at rock sites in intraplate regions or artificially synthesized. Ground motion time series at soil sites should be obtained from site response analysis. However, in practice, selecting suitable ground motion records is challenging due to the overall lack of large earthquakes in intraplate regions, and artificially synthesized time series often leads to unrealistic responses of structures. As an alternative approach, this study provides a case study of generating ground motion time series based on the hybrid broadband ground motion simulation of selected scenario earthquakes at sites in the Nakdonggang delta region. This research is significant as it provides a novel method for generating ground motion time series that can be used in seismic design and response analysis. For large-magnitude earthquake scenarios close to the epicenter, the simulated response spectra surpassed the 1000-year design response spectra in some specific frequency ranges. Subsequently, the acceleration time series at each location were used as input motions to perform nonlinear 1D site response analysis through the PySeismoSoil Package to account for the site response characteristics at each location. The results of the study revealed a tendency to amplify ground motion in the mid to long-period range in most places within the study area. Additionally, significant amplification in the short-period range was observed in some locations characterized by a thin soil layer and relatively high shear wave velocity soil near the upper bedrock.

Applying TID-PSS to Enhance Dynamic Stability of Multi-Machine Power Systems

  • Mohammadi, Ramin Shir;Mehdizadeh, Ali;Kalantari, Navid Taghizadegan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.287-297
    • /
    • 2017
  • Novel power system stabilizers (PSSs) have been proposed to effectively dampen low frequency oscillations (LFOs) in multi-machine power systems and have attracted increasing research interest in recent years. Due to this attention, recently, fractional order controllers (FOCs) have found new applications in power system stability issues. Here, a tilt-integral-derivative power system stabilizer (TID-PSS) is proposed to enhance the dynamic stability of a multi-machine power system by providing additional damping to the LFOs. The TID is an extended version of the classical proportional-integral-derivative (PID) applying fractional calculus. The design of the proposed three-parameter tunable TID-PSS is systematized as a nonlinear time domain optimization problem in which the tunable parameters are adjusted concurrently using a modified group search optimization (MGSO) algorithm. An integral of the time multiplied squared error (ITSE) performance index is considered as the objective function. The proposed stabilizer is simulated in the MATLAB/SIMULINK environment using the FOMCON toolbox and the dynamic performance is evaluated on a 3-machine 6-bus power system. The TID-PSS is compared with both classical PID-PSS (PID-PSS) and conventional PSS (CPSS) using eigenvalue analysis and time domain simulations. Sensitivity analyses are performed to assess the robustness of the proposed controller against large changes in system loading conditions and parameters. The results indicate that the proposed TID-PSS provides the better dynamic performance and robustness compared with the PID-PSS and CPSS.

An Analysis of Relation between Exercise Addiction and Affect to Sociodemographic Characteristics (사회인구학적특성에 따른 운동중독과 정서의 관계)

  • Hyun, Sung-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.129-138
    • /
    • 2010
  • The purpose of this study was to analyze the difference between Exercise addiction and Affect, and addiction-related potential was investigated. In addition, exercise addiction prevention and positive exercise was to identify. The participants of the study included 312 tennis club member who were more than 20 years old and lived in seoul city. The survey was analyzed by SPSS PC+ for window (version 12.0) which is a statistical analysis program to produce the computational results of this study. Based on the survey, this study could draw such results as follows: First, exercise addiction, gender and age on partial variables were statistically significant differences. A male positive addictions, exercise desire were higher than in female. 50s in the withdrawal symptoms of the variables that showed statistically significant difference participation, and period, frequency, time of exercise addiction showed that in withdrawal symptoms, positive addictions domain in a statistically meaningful differences. Second, social demographic domain in the presence of gender showed significant correlation exercise desire were and exercise participation time in the positive addictions showed significant correlation. Participation frequency and the time involved in retaining all the positive affect and negative affect have found a high correlation. Third, the influence of relation between exercise addiction and affect of tennis participants, exercise desire, positive addiction, showed in a statistically positive affect and negative affect meaningful influence on it.