• Title/Summary/Keyword: Time-Cost factor

Search Result 626, Processing Time 0.03 seconds

Stability of Construction Cost-variability Factor Rankings from Professionals' Perspective: Evidence from Dar es Salaam -Tanzania

  • Shabani, Neema;Mselle, Justine;Sanga, Samwel Alananga;Kanuti, Arbogasti Isidori
    • Journal of Construction Engineering and Project Management
    • /
    • v.8 no.2
    • /
    • pp.17-33
    • /
    • 2018
  • This study investigates the stability of professionals' cost variability factor-rankings across different levels of cost-variability and response scenarios. Descriptive statistics are used to examine the stability of factor-ranking for 20 cost variability factors and a Multinomial Logistic (MNL) regression model was implemented to examine the stability of cost variability factors across three cost variability levels. The finding on the descriptive statistics indicated that professionals' factors-rankings are stable only for external factors. The MNL regression results on factor-stability suggested that 8 out of the 20 evaluated factors were unstable determinant of lower cost variability levels. These factors are "risk associated with the project", "personal bias and poor professionalism of the estimators", "limited time available to complete the project", "lack of skills and experience by estimator" "geographical location of projects", "incomplete & rush designs for estimate", "unforeseen or unexpected site constraints", "high class bidders for the contractors". Similarly lack of experience and large size projects were observed to be unstable as well. These observations suggest that professionals' view on pre-tender cost variability factor-ranking yields unstable factor rankings hence should not be relied upon as the only mechanisms to mitigate cost related risks in construction projects.

A study on evaluation of information retrieval system (정보검색(情報檢索)시스템의 평가(評価)에 관한 연구(硏究))

  • Park, In-Ung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.5 no.1
    • /
    • pp.85-105
    • /
    • 1981
  • Information is an essential factor leading the rapid progress which is one of the distinguished characteristics in modem society. As more information is required and as more is supplied by individuals, governmental units, businesses, and educational institutions, the greater will be the requirement for efficient methods of communication. One possibility for improving the information dissemination process is to use computers. The capabilities of such machine are beginning to be used in the process of Information storage, retrieval and dissemination. An important problems, that must be carefully examined is whether one technique for information retrieval is better for worse than another. This paper examines problem of how to evaluate an information retrieval system. One specific approach is a cost accounting model for use in studying how to minimize the cost of operating a mechanized retrieval system. Through the use of cost analysis, the model provides a method for comparative evaluation between systems. The general cost accounting model of the literature retrieval system being designed by this study are given below. 1. The total cost accounting model of the literature retrieval system. The total cost of the literature retrieval system = (the cost per unit of user time X the amount of user time) + ( the cost per unit of system time X the amount of system time) 2. System cost accounting model system cost = (the pre-search system cost per unit of time X time) + (the search system cost per unit of time X time) + (the post search system cost per unit of time X time) 1) Pre-search system cost per unit of time = cost of channel per unit time + cost of central processing unit per unit time + cost of storage per unit time 2) Search system cost per unit of time = comparison cost + document representation cost. 3) Post-search system cost per unit of time. = cost of channel per unit time + cost of central processing unit per unit time + cost of storage per unit time 3. User cost accounting model Total user cost = [pre-search user cost per unit of time X (time + additional time) ] + [search user cost per unit of time X (time + additional time) ] + [post-search user cost per unit of time X (time + additional time) ].

  • PDF

Optimal Periodic Preventive Maintenance with Improvement Factor (개선지수를 고려한 주기적 예방보전의 최적화에 관한 연구)

  • Jae-Hak Lim
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.193-204
    • /
    • 2003
  • In this paper, we consider a periodic preventive maintenance(PM) policy in which each PM reduces the hazard rate but remains the pattern of hazard rate unchanged. And the system undergoes only minimal repairs at failures between PM's. The expected cost rate per unit time is obtained. The optimal number N of PM and the optimal period x, which minimize the expected cost rate per unit time are discussed. Explicit solutions for the optimal periodic PM are given for the Weibull distribution case.

A Study of Effects of Stock Option on Firm's Performance (주식매수선택권이 기업성과에 미친 영향에 대한 연구)

  • Shin, Yeon-Soo
    • The Journal of Information Technology
    • /
    • v.9 no.4
    • /
    • pp.75-85
    • /
    • 2006
  • This study is to test the influence of stock option granting information on the firm's performance. The important issue in stock option is that agent cost is the important determinant factor for the long term performance. The agent cost arises between the manager and shareholders. So many study are concentrated in diminishing the agent cost, and develop some substitute tools to measure the agent cost. The event study about stock option analyzes returns around event date at a time. Event study provides estimation periods and cumulative returns. Announcements about stock option are generally associated with positive abnormal returns in short term period, but not showing positive effect in long term period. It is important to investigate the responses of stocks to new information contained in the announcements of stock option. Therefore it is important to study the long term performance in the case of stock option. The event time portfolio approach exists the CAR model, BHAR model and WR model. And the calendar time portfolio approach has the 3 factor model, 4 factor model, CTAR model, and RATS model. This study is forced to develop and arrange two approach method in evaluating the performance, the event time portfolio approach and calendar time portfolio approach.

  • PDF

Power Factor Correction of Single-phase Boost Converter for Low-cost Type UPS Configuration (저 가격형 UPS를 구성하기 위한 단상 부스트 컨버터의 고 역률 제어)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.145-150
    • /
    • 2013
  • A novel AC to DC PWM converters with unity input power factor are proposed to overcome the above shortcoming. The main function of these converters is to shape the input line current to force it exactly in phase with the input AC voltage. Therefore, the input power factor can be improved to near unity and the input current harmonics can be eliminated. In this paper, half-bridge converter with two active switches and two diodes are utilized for low-cost type UPS configuration. By having only two semiconductors in the current path at any time, losses can be reduced over the conventional boost topology. Also, this converter provides controllable dc-link voltage, high power factor, and low cost type converter by simple power circuits. Simulation results show that the proposed half-bridge converter/inverter control technique can be applied to single-phase low-cost type UPS systems successfully.

Optimization of Software Cost Model with Warranty and Delivery Delay Costs

  • Lee, Chong-Hyung;Jang, Kyu-Beom;Park, Dong-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.697-704
    • /
    • 2005
  • Computer software has gradually become an indispensable elements in many aspects of our daily lives and an important factor in numerous systems. In recent years, it is not unusual that the software cost is more than the hardware cost in many situations. In addition to the costs of developing software, the repair cost resulting from the software failures are even more significant. In this paper, a cost model with warranty cost, time to remove each fault detected in the software system, and delivery delay cost is developed. We use a software reliability model based on non-homogeneous Poisson process (NHPP). We discuss the optimal release policies to minimize the expected total software cost. Numerical examples are provided to illustrate the results.

Production Management System having Realtime Cost Calculation Function using RFID (RFID를 이용한 실시간 생산원가 산출기능을 갖는 생산관리 시스템)

  • Park, In-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • In this paper, the implementation of a production control system has been studied in order to obtain Realtime Cost Calculation using an exact Machine Factor and Man Factor based on RFID reader data transferred through network. For the study, microprocessor built in the controller of production facilities is used and also RFID reader is built additionally. Control part, card reader used for check the beginning and ending working time of workers, and Machine Factor and Man Factor calculated are transferred to server via PLC transmission port, serial transmission port, or Ethernet transmission port. By using the system, the production cost or the production efficiency is calculated exactly. Therefore it is possible to improve production rate and cost reduction by the use of the proposed production control system.

Cost Analysis Model for Periodic Maintenance Policy with Maintenance Cost Factor (보전비용요소를 고려한 정기보전정책의 비용분석모델)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.287-295
    • /
    • 1995
  • This paper is concerned with cost analysis model in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Mimimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a new item until tile periodic maintenance time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to scale parameter of failure distribution. Maintenance cost factors are included operating, fixed, minimal repair, periodic maintenance and new item replacement cost. Numerical example is shown in which failure time of system has weibull distribution.

  • PDF

Investigation into the Effectiveness on Customized Remodeling - Focusing on apartment houses completed during remodeling - (맞춤형 리모델링에 대한 실효성 검증 연구 - 리모델링을 추진중, 완공한 공동주택을 중심으로 -)

  • Yoon, Hyang-Seung;Kim, Gi-Soo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.7
    • /
    • pp.3-12
    • /
    • 2018
  • The present remodeling makes almost no difference from rebuilding as all the building materials are removed remaining frame structure only. And, in case of vertical extension of building, higher construction cost and safety problem occur. The Ministry of Land, Transport and Maritime Affairs, therefore, recommends customized remodeling that can be made in light of the resident' needs such as parking lot, elevator, bathroom, and room for the alternative of remodeling of vertical extension of building. The purpose of this study is to present real data that can be referred to the constructor's decision making before starting the remodeling, by investigating and analyzing the weight and importance between evaluation factors for customized remodeling at the completed time of remodeling. Accordingly, the factors were divided into environmental factor, social factor, and economical factor, and the survey was performed for the residents living in remodeling houses. In addition, for the professionals, AHP (Analytic Hierarchy Process) has been carried out for the priority in the customized remodeling. For environmental factor, the level of importance made difference from that before remodeling, except parking level. For social factor, every item, including psychological satisfaction and community satisfaction, made difference. For economical factor, the recognition level of importance in rent made difference, except sale price of the factor for price satisfaction. In case of the factor for cost satisfaction, it was checked that construction cost and administration cost both could be considered important. As a result of AHP, the most importantly emphasized item was construction cost, and sale price, administration cost, residence structure, and parking lot were followed by priority in order. This study could contribute to reliably settle down customized remodeling by giving reasonable and substantial help from the analysis of the differences in the customized remodeling items before/after the remodeling.

The Development of Probabilistic Time and Cost Data: Focus on field conditions and labor productivity

  • Hyun, Chang-Taek;Hong, Tae-Hoon;Ji, Soung-Min;Yu, Jun-Hyeok;An, Soo-Bae
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • Labor productivity is a significant factor associated with controlling time, cost, and quality. Many researchers have developed models to define methods of measuring the relationship between productivity and various parameters such as the size of working area, maximum working hours, and the crew composition. Most of the previous research has focused on estimating productivity; however, this research concentrates on estimating labor productivity and developing time and cost data for repetitive concrete pouring activity. In Korea, "Standard Estimating" only entails the average productivity data of the construction industry, and it is difficult to predict the time and cost spent on any particular project. As a result, errors occur in estimating duration and cost for individual activities or projects. To address these issues, this research sought to collect data, measure productivity, and develop time and cost data using labor productivity based on field conditions from the collected data. A probabilistic approach is also proposed to develop data. A case study is performed to validate this process using actual data collected from construction sites. It is possible that the result will be used as the EVMS baseline of cost management and schedule management.