• 제목/요약/키워드: Time varying stiffness

검색결과 75건 처리시간 0.028초

Human Arm Posture Control Using the Impedance Controllability of the Musculo-Skeletal System Against the Alteration of the Environments

  • Kim, Jaehyo;Makoto Sato;Yasuharu Koike
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.43-48
    • /
    • 2002
  • We show that humans execute the postural control ingeniously by regulating the impedance properties of the musculo-skeletal system as the motor command against the alteration of the environment. Adjusting muscle activity can control the impedance properties of the musculo-skeletal system. To quantify the changes in human arm viscoelasticity on the vertical plane during interaction with the environment, we asked our subject to hold an object. By utilizing surface electromyographic(EMG) studies, we determined a relationship between the perturbation and a time-varying muscle co-activation. Our study showed when the subject lifts the object by himself the muscle stiffness increases while the torque remains the same just before the lift-off. These results suggest that the central nervous system(CNS) simultaneously controls not only the equilibrium point(EP) and the torque, but also the muscle stiffness as themotor command in posture control during the contact task.

산성 셀룰라제 이용한 데님의 효소가공 및 물성 (Enzymatic Processing and Property of Denim by Acid Cellulase)

  • 서혜영;송화순;김혜림
    • 한국의류산업학회지
    • /
    • 제11권3호
    • /
    • pp.465-468
    • /
    • 2009
  • In this study, acid cellulase was used to treat denim fabrics by varying pH, temperature, enzyme concentration, treatment time and non-ionic surfactant (Triton X-100) concentration. Treatment condition was controlled based on the weight loss. The characteristics of enzyme-treated fabrics were measured in terms of tearing strength, stiffness, and color difference. The optimum conditions for cellulase treatment of denim fabric were pH 5.0, $50^{\circ}C$, 3% (o.w.f.), 90minutes. The weight loss did not change significantly with the addition of a non-ionic surfactant, but it improved when more non-ionic surfactant were used. The tearing strength of enzyme-treated denim fabrics did not deteriorate. The stiffness of the treated fabrics improved with the enzymatic treatment with and without the non-ionic surfactant. The difference in color of fabrics treated with enzyme increased.

우유의 렌넷 젤에 대한 기계적 특성 (Rennet-induced gels and their mechanical properties)

  • 최종우
    • 농업과학연구
    • /
    • 제38권4호
    • /
    • pp.711-716
    • /
    • 2011
  • Casein micelles are the basic building block of rennet-induced gels. The stiffness of these gels is increased with reaction time. This is probably due to the continuous participation of activated casein micelles into growing network. Dual binding model of casein micelles, which explains assembly of casein and colloidal calcium phosphate, can provides fairly reasonable explanation for the changes in mechanical properties of rennet-induced gels made from different milk pHs and varying colloidal calcium phosphates. The changes in stiffness of these gels would be used for controlling textural properties of cheeses.

A combined spline chirplet transform and local maximum synchrosqueezing technique for structural instantaneous frequency identification

  • Ping-Ping Yuan;Zhou-Jie Zhao;Ya Liu;Zhong-Xiang Shen
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.201-215
    • /
    • 2024
  • Spline chirplet transform and local maximum synchrosqueezing are introduced to present a novel structural instantaneous frequency (IF) identification method named local maximum synchrosqueezing spline chirplet transform (LMSSSCT). Namely spline chirplet transform (SCT), a transform is firstly introduced based on classic chirplet transform and spline interpolated kernel function. Applying SCT in association with local maximum synchrosqueezing, the LMSSSCT is then proposed. The index of accuracy and Rényi entropy show that LMSSSCT outperforms the other time-frequency analysis (TFA) methods in processing analytical signals, especially in the presence of noise. Numerical examples of a Duffing nonlinear system with single degree of freedom and a two-layer shear frame structure with time-varying stiffness are used to verify the effectiveness of structural IF identification. Moreover, a nonlinear supported beam structure test is conducted and the LMSSSCT is utilized for structural IF identification. Numerical simulation and experimental results demonstrate that the presented LMSSSCT can effectively identify the IFs of nonlinear structures and time-varying structures with good accuracy and stability.

Analysis of vibration characterization of a multi-stage planetary gear transmission system containing faults

  • Hao Dong;Yue Bi;Bing-Xing Ren;Zhen-Bin Liu;Yue, Li
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.389-403
    • /
    • 2023
  • In order to explore the influence of tooth root cracks on the dynamic characteristics of multi-stage planetary gear transmission systems, a concentrated parameter method was used to construct a nonlinear dynamic model of the system with 30-DOF in bending and torsion, taking into account factors such as crack depth, length, angle, error, time-varying meshing stiffness (TVMS), and damping. In the model, the energy method was used to establish a TVMS model with cracks, and the influence of cracks on the TVMS of the system was studied. By using the Runge- Kutta method to calculate the differential equations of system dynamics, a series of system vibration diagrams containing cracks were obtained, and the influence of different crack parameters on the vibration of the system was analyzed. And vibration testing experiments were conducted on the system with planetary gear cracks. The results show that when the gear contains cracks, the TVMS of the system will decrease, and as the cracks intensify, the TVMS will decrease. When cracks appear on the II-stage planetary gear, the system will experience impact effects with intervals of rotation cycles of the II-stage planetary gear. There will be obvious sidebands near the meshing frequency doubling, and the vibration trajectory of the gear will also become disordered. These situations will become more and more obvious as the degree of cracks intensifies. Through experiments, the theoretical results are in good agreement with experimental results, verifying the correctness of the theoretical model. This provides a theoretical basis for fault diagnosis and reliability research of the system.

나노인덴테이션에 의한 Al-Si-Cu-Mg 합금 폼 셀 벽의 기계적 물성 연구 (A Nanoindentation Based Study of Mechanical Properties of Al-Si-Cu-Mg Alloy Foam Cell Wall)

  • 하산;김엄기;이창훈;이학주;고순규;조성석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.382-387
    • /
    • 2004
  • Nanoindentation technique has been used to measure the mechanical properties of aluminium alloy foam cell walls. Al-Si-Cu-Mg alloy foams of different compositions and different cell morphologies were produced using powder metallurgical method. Cell morphology of the foam was controlled during production by varying foaming time and temperature. Mechanical properties such as hardness and Young's modulus were calculated using two different methods: a continuous stiffness measurement (CSM) and an unloading stiffness measurement (USM) method. Experimental results showed that hardness and Young's modulus of Al-5%(wt.)Si-4%Cu-4%Mg (544 alloy) precursor and foam walls are higher than those of Al-3%Si-2%Cu-2%Mg (322 alloy) precursor and foam walls. It was noticed that mechanical properties of cell wall are different from those of precursor materials.

  • PDF

편심하중을 가한 고층건물의 아웃리거 댐퍼 시스템 제어성능평가 (Control Performance Evaluation of Outrigger Damper System of Eccentrically Loaded High-Rise Building)

  • 김수진;김수근;강호근;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제17권2호
    • /
    • pp.43-51
    • /
    • 2017
  • The demand for skyscrapers is increasing worldwide. Until now, various lateral resistance structures have been used for lateral displacement control of high-rise buildings. An outrigger damper system has been introduced recently to improve lateral dynamic response control performance further. However, a study of outrigger damper system is yet to be sufficiently investigated. In this study, time history analysis was performed to investigate the control performance of an outrigger damper system of high-rise building under eccentric loading. To do this, an actual scale 3-dimensional tall building model with an outrigger damper system was prepared. The control performance of the outrigger damper system was evaluated by varying stiffness and damping values. On the top floor torsional angle response to the earthquake load, was greatly affected by damping value. And the displacement response was affected greatly by the stiffness value and damping value of damper system. In conclusion, it is necessary to select the proper damping and stiffness values of the outrigger damper system.

지진하중에 의한 철근콘크리트 전단벽의 강성 저하에 관한 연구 (Stiffness Degradation Induced by Seismic Loading on a RC Shear Wall)

  • 이윤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권3호
    • /
    • pp.48-54
    • /
    • 2022
  • 본 연구는 균열에 의한 콘크리트 전단벽 강성저하 영향 평가를 위해 수행되었으며, 극한 내지진 하중의 60%까지 재하한 비선형 해석 결과, 사전 균열효과에 의해 비손상 대비 진동수의 12%정도 진동수가 감소하였으며 강성 측면에서 23%정도의 감소현상을 나타냈다. 단계적으로 지진하중의 크기를 증가시킨 비선형 해석 결과, 지진하중의 세기가 커짐에 따라 콘크리트 전단벽체에 전단균열이 발생하여 진전함을 파악하고, 반복이력에 의한 에너지 손실과 강성 저하가 뚜렷하게 발생함을 알 수 있었다. 또한 두 가지 콘크리트 강도와 전단벽 제원에 대하여 지진하중의 크기가 극한 내지진 하중에 근접함에 따라 진동수의 감소량은 비손상 대비 10~40%정도로 나타났으며, 강성의 경우 비손상 대비 40%정도 수준까지 감소할 수 있는 것으로 나타났다.

홈이 회전하는 빗살무늬 저널 베어링의 안정성 해석 (Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves)

  • 윤진욱;장건희
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.247-257
    • /
    • 2003
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic Journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

홈이 회전하는 빗살무의 저널 베어링의 안정성 해석 (Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves)

  • 윤진욱;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.166-174
    • /
    • 2002
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

  • PDF