• Title/Summary/Keyword: Time synchronization algorithm

Search Result 249, Processing Time 0.03 seconds

Design and Evaluation of a Distributed Multimedia Synchronization Algorithm using Media Scalings (미디어 스케일링을 사용한 분산 멀티미디어 동기화 알고리즘의 설계 및 평가)

  • Bae, Ihn-Han
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2208-2220
    • /
    • 1997
  • This paper presents a distributed multimedia synchronization algorithm that supports both intramedia and intermedia synchronizations. The intramedia synchronization is achieved by media scaling techniques, and the intermedia synchronization is achieved by variable service rates. We compute the check period between master media's and slave media's relative time stamps for intermedia synchronization. We also evaluate our algorithm through simulations. Simulation results show that our algorithm performs well in both intramedia and intermedia synchronizations.

  • PDF

Wireless TDD Time Synchronization Technique Considering the Propagation Delay Between Mobile Vehicles (이동체간 전파지연을 고려한 무선 TDD 시각 동기화 기법)

  • Boo, Jung-il;Ha, Jeong-wan;Kim, Kang-san;Kim, Bokki
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.392-399
    • /
    • 2019
  • In this paper, we have studied wireless time division duplex(TDD) time synchronization technique considering the propagation delay between mobile vehicles. The existing IEEE 1588 precision time protocol(IEEE 1588 PTP) algorithm was applied and the time synchronization between the two nodes was achieved through the propagation delay and clock offset time correction calculated between master slave nodes during wireless TDD communication. The time synchronization process and procedure of IEEE 1588 PTP algorithm were optimized, thereby reducing the propagation delay error sensitivity for real-time moving vehicles. The sync flag signal generated through the time correction has a time synchronization accuracy of max +252.5 ns within 1-symbol(1.74 M symbol/sec, ${\pm}287.35ns$) through test and measurement, and it was confirmed that the time synchronization between master slave nodes can be achieved through sync flag signal generated during GPS disturbance.

Multimedia Synchronization using PetriNet in Mobile Environment (모바일 환경에서 페트리넷을 이용한 멀티미디어 동기화)

  • Lee, Keun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.449-454
    • /
    • 2008
  • As demand for the application in multimedia networks is increasing rapidly, it is important to provide these services in Mobile Environments (ME). Obtaining to multimedia services which satisfy synchronization constraints in ME and improving the delay time and Quality of Service(QoS) between media streams to be presented, new specification model has to be proposed. In this paper we propose Mobile Synchronization Model(MSM) as a new specification model for describing efficiently the QoS and the delay time. Also, we propose the multimedia synchronization algorithm where is a dynamic synchronization method that minimizes the effects of adaptive transmission delay time. The proposed model has higher the guarantee of QoS such as the loss rate and the playout rate than it of the previous work.

An Energy-efficient Pair-wise Time Synchronization Protocol for Wireless Networks (에너지 효율적인 무선 네트워크용 상호 시각 동기화 프로토콜)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1808-1815
    • /
    • 2016
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol, has been already developed to provide time synchronization among nodes in wireless sensor networks. Even though the TPSN's method has been referenced by so many other time synchronization schemes for resource-constrained networks like wireless sensor networks or low power personal area networks, it has some inefficiency in terms of power consumption and network-wide synchronization time (or called convergence time). The main reason is that each node in TPSN needs waiting delay to solve the collision problem due to simultaneous transmission among competing nodes, which causes more power consumption and longer network convergence time for a network-wide synchronization. In this paper an improved scheme is proposed by changing message exchange method among nodes. The proposed scheme not only shortens network-wide synchronization time, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.

Accuracy Analysis of Time Synchronization in Wireless Sensor Networks (무선 센서 네트워크에서 시각 동기 정확도 분석)

  • Hwang, Soyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1487-1495
    • /
    • 2013
  • Time synchronization is a prerequisite in wireless sensor network applications such as object tracking, consistent state update, duplication detection, and temporal order delivery. This paper analyze time synchronization accuracy of pair-wise time synchronization algorithm which is a typical time synchronization model of time synchronization method in wireless sensor networks. In addition, the analyzed results are verified by simulations. These results can be utilized for performance improvement or development of time synchronization in wireless sensor networks.

Chaotic Synchronization of Using HVPM Model (HVPM 모델을 이용한 카오스 동기화)

  • 여지환;이익수
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.4
    • /
    • pp.75-80
    • /
    • 2001
  • In this paper, we propose a new chaotic synchronization algorithm of using HVPM(Hyperchaotic Volume Preserving Maps) model. The proposed chaotic equation, that is, HVPM model which consists of three dimensional discrete-time simultaneous difference equations and shows uniquely random chaotic attractor using nonlinear maps and modulus function. Pecora and Carrol have recently shown that it is possible to synchronize a chaotic system by sending a signal from the drive chaotic system to the response subsystem. We proposed coupled synchronization algorithm in order to accomplish discrete time hyperchaotic HVPM signals. In the numerical results, two hyperchaotic signals are coupled and driven for accomplishing to the chaotic synchronization systems. And it is demonstrated that HVPM signals have shown the chaotic behavior and chaotic coupled synchronization.

  • PDF

Performance Improvement of Frame Synchronization in the 90Mb/s Optical Transmission System (90Mb/s 광전송시스템의 프레임 동기방식에 관한 성능 개선)

  • Shin, Dong Kwan;Lee, Man Seop;Kim, Yong Hwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.183-189
    • /
    • 1987
  • The performance of frame synchronization can be represented by the values of three characteristic variables-average misframe interval, average syncloss detection time, average reframe time. In this paper, we have analyzed the performance of frame synchronization of the standardized 90Mb/s optical transmission system by Markov chain method, with the suggestion of an extended algorithm for performance improvement. Maximum average reframe time of 1.18 ms can be obtained by the suggested algorithm, which is compared with that of 2.28 ms for the existing algorithm.

  • PDF

EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘)

  • Kim, Soo-Joong;Hong, Sung-Hwa;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF

An Improved Time Synchronization Algorithm in Sensor Networks (Sensor Network에서의 개선된 망동기화 알고리즘)

  • Jang, Woo-Hyuk;Kwon, Young-Mi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.9
    • /
    • pp.13-19
    • /
    • 2008
  • Time synchronization of nodes in sensor network synchronizes sensor nodes to one time clock. This is very essential in sensor networks so that the information collected and reported from the sensor nodes becomes meaningful. If sensor nodes are not synchronized, disaster report with time information can be wrong analyzed and this may lead to big calamity. With the limitation of battery and computing power, time synchronization algorithm imported in sensor nodes has to be as simple as it doesn't need big complexity, nor generates many synchronization messages. To reduce the synchronization error, hop count should be kept small between reference node to initiate synchronization and sensor nodes to be synchronized. Therefore, multiple reference nodes are used instead of single reference node. The use of multiple reference nodes introduce the requirement of synchronization among reference nodes in the network. Several algorithms have been proposed till now, but the synchronization among reference nodes are not well considered. This paper proposes improved time synchronization for sensor networks by synchronizing multiple reference nodes inside the network. Through simulation, we validated the effects of new algorithm.

An Analysis of Error Factors for Software Based Pseudolite Time Synchronization Performance Evaluation (소프트웨어 기반 의사위성 시각동기 기법 성능평가를 위한 오차 요소 분석)

  • Lee, Ju Hyun;Lee, Sun Yong;Hwang, Soyoung;Yu, Dong-Hui;Park, Chansik;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.429-436
    • /
    • 2014
  • This paper proposes three methods of the time synchronization for Pseudolite and GPS and analyzes pseudolite time synchronization error factors for software based performance evaluation on proposed time synchronization methods. Proposed three time synchronization methods are pseudolite time synchronization station construction method, method by using UTC(KRIS) clock source and GPS timing receiver based time synchronization method. Also, we analyze pseudolite time synchronization error factors such as errors of pseudolite clock and reference clock, time delay as clock transmission line, measurement error of time interval counter and error as clock synchronization algorithm to design simulation platform for performance evaluation of pseudolite time synchronization.