• Title/Summary/Keyword: Time series simulation

Search Result 689, Processing Time 0.022 seconds

Application of DEM with Coarse Graining Method to Fluidal Material Behavior Analysis (유동성 재료의 동적 거동 해석을 위한 입자확대법 기반 DEM의 적용)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.23-30
    • /
    • 2017
  • PURPOSES : In this paper, the applicability of DEM to a coarse graining method was evaluated by simulating a series of minicone tests for cement paste. METHODS : First, the fundamental physical quantities that are used in a static liquid bridge model were presented with three basic quantities based on the similarity principle and coarse graining method. Then, the scale factors and surface tensions for six different sizes of particles were determined using the relationship between the physical quantities and the basic quantities. Finally, the determined surface tensions and radii were utilized to simulate the fluidal behavior of cement paste under a minicone test condition, and the final shape of the cement paste with reference DEM particle radii was compared with the final shape of the others. RESULTS : The simulations with adjusted surface tensions for five different radii of particles and surface tension showed acceptable agreement with the simulation with regard to the reference size of the particle, although disagreement increases as the sizes of the particle radii increase. It seems reasonable to increase the particle radii by at least 0.196 cm considering the computational time reduction of 162 min. CONCLUSIONS : The coarse graining method based on the similarity principle is applicable for simulating the behavior of fluidal materials when the behavior of the materials can be described by a static liquid bridge model. However, the maximum particle radius should be suggested by considering not only the scale factor but also the relationship of the particle size and number with the radius of the curve of the boundary geometry.

Estimation of Peak Water Level Based on Observed Records and Assessment of Inundation in Coastal Area - A Case Study in Haeundae, Busan City - (관측자료에 기반한 미래 해수위 예측 및 연안지역 침수위험면적 분석 - 부산시 해운대구 일대를 대상으로 -)

  • Ahn, Saekyul;Lee, Dongkun
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.445-456
    • /
    • 2017
  • For impact assessment of inundation in coastal area due to sea level rise (SLR), model for estimating future peak water level was constructed using observed mean sea level (MSL), storm surge level (SSL) data and calculated tide level (TL) data. Based on time series analysis and quadratic polynomial model for SLR and Monte-Carlo simulation for IC, SSL and TL, 100-year return peak water level is expected to be 2.3, 2.6, 2.8m, respectively (each corresponding to year 2050, 2080, 2100). Further analysis on future potential inundation area showed U-dong, Yongho-dong, Songjeong-dong, Jaesong-dong to be at high risk.

A Study on the Three-dimensional Expression of Fashionable Textiles based on Analyses of 3D Scanning and Textile Properties -Focus on the Work of Iris van Herpen- (패션소재의 입체적 표현에 대한 3D Scanning 및 소재특성 분석 연구 -Iris van Herpen의 작품을 중심으로-)

  • Lee, ReA;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.20 no.2
    • /
    • pp.124-133
    • /
    • 2016
  • Currently the fashion industry is developing to create a novel culture due to the very sensitive and knowledge-oriented advancement of the IT industry. With fast turnover of information, consumers have come to have a more diverse desire for purchasing. Cubical expression techniques, which empathizes formativeness, can be a creative expression method adjusting into the trend of this era. Along with functional aspects of consumers, even in a textile manufacturing sector, new materials are required to meet sensitive and emotional aspects. Consumers' desire for new and creative designs and the development and adoption of new materials are essential to meet their emotions. The IT industry and fashion industry are forced to combine and a 3D apparel CAD system has been developed, enabling virtual clothing to be represented within a computer virtual space. All processes such as design, pattern creation, sewing and simulation are possible in 3D level. Digital clothing can shorten the production process time and is very effective in that it can reduce clothing waste generated during the sample production. This paper reviewed the works of Dutch designer, Iris van Herpen, who has developed formative designs. She tries to build, construct, and sculpt employing diversified materials other than soft textile materials, as shown in her series of fashion shows. The materials include films, 3D printed polymers, stiff and sheer organza, and artificial leather textiles. A few characteristics of her works have been selected in order to prepare patterns exhibiting the traits. The paper further focused on the physical features of the textile materials used to express similar techniques and its various forms were reviewed.

Building Integrated Vegetation Systems into the New Sainsbury's Building Based on BIM

  • Lee, Dong-Kyu
    • Journal of KIBIM
    • /
    • v.4 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • Today, there is a growing need of environment-friendly buildings, so-called 'green', facilities, and energy saving buildings to decrease environmental pollutants released into cities by construction activities. Green-Building Information Modeling (Green-BIM) is a purpose-built solution which supports to forecast energy consumption of 3-D model of a building by augmenting its primary 3-D measurements (width, height and depth) with many more dimensions (e.g. time, costs, social impacts and environmental consequences) throughout a series of sequential phases in the lifecycle of a building. The current study was carried out in order to integrate vegetation systems (particularly green roof and green wall systems) and investigate thermal performance of the new Sainsbury's building which will be built on Melton road, Leicester, United Kingdom. Within this scope, a 3-D building model of the news Sainsbury's building was first developed in $Autodesk^{(R)}$ $Revit^{(R)}$ and this model was then simulated in $Autodesk^{(R)}$ $Ecotect^{(R)}$once weather data of the construction site was obtained from $Autodesk^{(R)}$ Green Building $Studio^{(R)}$. This study primarily analyzed data from (1) solar radiation, (2) heat gains and losses, and (3) heating and cooling loads simulation to evaluate thermal performance of the building integrated with vegetation system or conventionally available envelops. The results showed that building integrated vegetation system can potentially reduce internal solar gains on the building rooftops by creating a 'bioshade'. Heat gains and losses through roofs and walls were markedly diminished by offering greater insulation on the building. Annual energy loads for heating and cooling were significantly reduced by vegetation more significantly through the green roof system in comparison to green wall system.

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

A Numerical Study of the Residual Hydrogen Concentration in the Weld Metal (용접금속 잔류수소농도의 수치해석 연구)

  • Yoo, Jinsun;Ha, Yunsok;S.R., Rajesh
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.42-46
    • /
    • 2016
  • Hydrogen assisted cracking (HAC) is one of the most complicated problem in welding. Huge amount of studies have been done for decades. Based on them, various standards have been established to avoid HAC. But it is still a chronic problem in industrial field. It is well known that the main causes of the hydrogen crack are residual stress, crack susceptible micro structures and a certain critical level of hydrogen concentration. Even though the exact generating mechanism is unclear till today, it has been reported that the hydrogen level in the weld metal should be managed less than a certain amount to prevent it. Matsuda studied that the residual hydrogen level in the weld metal can be varied even if the initial hydrogen content is same. It is also insisted in this report that the residual hydrogen concentration is in stronger correlation with hydrogen crack than the initial hydrogen content. But, in practical point of view, the residual hydrogen is still hard to consider because measuring hydrogen level is time and cost consuming process. In this regard, numerical analysis is the only solution for considering the residual hydrogen content. Meanwhile, Takahashi showed the possibility of predicting the residual hydrogen by a rigorous FE analysis. But, few commercial software suitable for solving the weld metal hydrogen has been reported yet. In this study, two dimensional thermal - hydrogen coupled analysis was developed by using the commercial FE software MARC. Since the governing equation of the hydrogen diffusion is similar to the heat transfer, it is shown that the heat transfer FE analysis in association with hydrogen diffusion property can be used for hydrogen diffusion analysis. A series of simulation was performed to verify the accuracy of the model. For BOP (Bead-On-Plate) and the multi-pass butt welding simulations, remaining hydrogen contents in the weld metal is well matched with measurements which are referred from Kim and Masamitsu.

Input output transfer function model development for a prediction of cyanobacteria cell number in Youngsan River (영산강 수계에서 남조류 세포수 모의를 위한 입출력 모형의 개발)

  • Lee, Eunhyung;Kim, Kyunghyun;Kim, Sanghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.789-798
    • /
    • 2016
  • Frequent algal blooms at major river systems in Korea have been serious social and environmental problems. Especially, the appearance of cyanobacteria with toxic materials is a threat to secure a safe drinking water. In order to model the behaviour of cyanobacteria cell number, an exclusive causality analysis using prewhitening technique was introduced to delineate effective parameters to predict the cell numbers of cyanobacteria in Seungchon Weir and Juksan Weir along Youngsan river system. Both input and output transfer function models were obtained to explain temporal variation of cyanobacteria cell number. A threshold behaviour of water temperature was implemented into the model development to consider winter characteristic of cyanobacteria. The implementation of water temperature threshold into the model structure improves the predictability in simulation. Even though the input output transfer model cannot completely explained all blooms of cyanobacteria, the simple structure of model provide a feasibility in application which can be important in practical aspect.

A Study on Thermal Analytical Model for a Dry Dual Clutch (건식 듀얼 클러치의 열해석 모델에 대한 연구)

  • Liu, Hao;Lee, J.C.;Noh, Y.J.;Cho, J.H.;Lee, H.R.;Koh, J.E.;Kang, J.W.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • The stability of friction characteristics and thermal management for a dry type dual clutch transmission (DCT) are inferior to those of a wet clutch. Too high temperature resulting from frequent engagement of DCT speeds up degradation or serious wear of the pressure plate or burning of the clutch disk lining. Even though it is significantly important to estimate the temperature of a dry double clutch (DDC) in real-time, few meaningful study of the thermal model of DDC has been known yet. This study presented a thermal analytical model of lumped parameters for a DDC by analyzing its each component firstly. Then a series of experimental test was carried out on the test bench with a patented temperature telemetry system to validate the proposed thermal model. The thermal model, whose optimal parameter values were found by optimization algorithm, was also simulated on the experimental test conditions. The simulation results of DDC temperature show consistency with the experiment, which validates the proposed thermal model of DDC.

Numerical Study on Turbulent Flow Inside a Channel with an Extended Chamber (난류 경계층에 놓인 공동 내부유동에 관한 수치해석적 연구)

  • Lee, Young-Tae;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.925-931
    • /
    • 2010
  • The paper describes a Large Eddy Simulation (LES) study of turbulent flow around a cavity. A series of three-dimensional cavities placed in a turbulent boundary layer are simulated at a Reynolds number of $1.0{\times}10^5$ by considering U and h, which represent the velocity at the top and the depth of the cavity, respectively. In order to obtain the appropriate solution for the filtered Navier-Stokes equation for incompressible flow, the computational mesh forms dense close to the wall of the cavity but relatively coarse away from the wall; this helps reduce computation cost and ensure rapid convergence. The Boussinesq hypothesis is employed in the subgrid-scale turbulence model. In order to determine the subgrid-scale turbulent viscosity, the Smagorinsky-Lilly SGS model is applied and the CFL number for time marching is set as 1.0. The results show the flow variations inside cavities of different sizes and shapes.

Wet Drop Impact Response Analysis of CCS in Membrane Type LNG Carriers -I : Development of Numerical Simulation Analysis Technique through Validation- (멤브레인형 LNG선 화물창 단열시스템의 수면낙하 내충격 응답해석 -I : 검증을 통한 수치해석 기법 개발-)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Kim, Wha-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.726-734
    • /
    • 2008
  • While the structural safety assessment of Cargo Containment System(CCS) in membrane type LNG carriers has to be carried out in consideration of sloshing impact pressure, it is very difficult to figure out its dynamic response behaviors due to its very complex structural arrangements/materials and complicated phenomena of sloshing impact loading. For the development of its original technique, it is necessary to understand the characteristics of dynamic response behavior of CCS structure under sloshing impact pressure. In this study, for the exact understanding of dynamic response behavior of CCS structure in membrane Mark III type LNG carriers under sloshing impact pressure, its wet drop impact response analyses were carried out by using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code, and were also validated through a series of wet drop experiments for the enhancement of more accurate shock response analysis technique. It might be thought that the structural response behaviors of impact response analysis, such as impact pressure impulses and resulted strain time histories, generally showed very good agreement with experimental ones with very appropriate use of FSI analysis technique of LS-DYNA code, finite element modeling and material properties of CCS structure, finite element modeling and equation of state(EOS) of fluid domain.