DOI QR코드

DOI QR Code

Numerical Study on Turbulent Flow Inside a Channel with an Extended Chamber

난류 경계층에 놓인 공동 내부유동에 관한 수치해석적 연구

  • Received : 2010.05.25
  • Accepted : 2010.08.23
  • Published : 2010.10.01

Abstract

The paper describes a Large Eddy Simulation (LES) study of turbulent flow around a cavity. A series of three-dimensional cavities placed in a turbulent boundary layer are simulated at a Reynolds number of $1.0{\times}10^5$ by considering U and h, which represent the velocity at the top and the depth of the cavity, respectively. In order to obtain the appropriate solution for the filtered Navier-Stokes equation for incompressible flow, the computational mesh forms dense close to the wall of the cavity but relatively coarse away from the wall; this helps reduce computation cost and ensure rapid convergence. The Boussinesq hypothesis is employed in the subgrid-scale turbulence model. In order to determine the subgrid-scale turbulent viscosity, the Smagorinsky-Lilly SGS model is applied and the CFL number for time marching is set as 1.0. The results show the flow variations inside cavities of different sizes and shapes.

본 논문은 공동 주위 난류유동특성을 LES 기법으로 수치해석을 수행하여 알아보았다. 본 연구에 적용된 레이놀즈수는 공동 깊이만큼의 높이 h 에서의 유속을 기준으로 $1.0{\times}10^5$ 이며 3 차원 공동에서의 유동특성을 알아보았다. 적절한 비압축성 Filtered Navier-Stokes 방정식을 적용하기 위해, 계산격자를 공동 표면 근처에는 조밀하게 멀어질수록 성기게 생성하였으며, 이는 계산시간을 단축시키며 빠른 수렴을 도와준다. 또한, Boussinesq 가설을 subgrid-scale 난류모델에 적용하였고, Subgrid-scale 난류점성을 얻기 위해 smagorinsky-Lilly SGS 모델을 적용하였으며, 그 때의 CFL 수는 1.0 이다. 또한, 본 논문은 서로 다른 4 가지 형상의 공동의 및 입구조건의 변화에 따른 유동 특성도 함께 연구되었다.

Keywords

References

  1. Heller, H. and Bliss, D., 1975 "Aerodynamically Induced Pressure Oscillations in Cavities: Physical Mechanisms and Suppression Concepts," U.S AirForce Fluid Dynamics Lab.,AFFDL-TR-73-133, Dayton, OH, February 1975.
  2. Krishnamury, K., 1955, "Acoustic Radiation from Two-Dimensional Rectangular Cutouts in Aerodynamic Surfaces," NACA TN-3487.
  3. Rossiter, J.E., 1964, "Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds," Aeronautical Research Council Reports and memoranda 3438.
  4. Heller, H.H., Holmes, D.G., and Covert, E.E., 1971, "Flow-Induced Pressure Oscillations in Shallow Cavities," Journal of Sound and Vibration, Vol.18, pp.545-553. https://doi.org/10.1016/0022-460X(71)90105-2
  5. Zhang, X., Chen, X.X., Rona, A., and Edwards J.A., 1999, "Attenuation of Cavity Flow Oscillation Through Leading Edge Flow Control," Journal of Sound and Vibration, Vol.221, No.1, pp.23-47. https://doi.org/10.1006/jsvi.1998.2012
  6. Larchevequel, L., Comte, P. and Sagaut, P., 2004 "Large-Eddy Simulation of Flows Past Cavities," AFM Research Group Seminar of Southampton.
  7. Lim, H.C. and Jeong, T.Y., 2008, "Study on the Generation of Turbulent Boundary Layer in Wind Tunnel and the Effect of Aspect Ratio of a Rectangular Obstacle," Trans. of the KSME (B), Vol. 32, No. 10, pp. 791-799. https://doi.org/10.3795/KSME-B.2008.32.10.791