• Title/Summary/Keyword: Time of flight method

Search Result 605, Processing Time 0.029 seconds

Analysis of Airline Network using Incheon and Narita Passenger Flight Origin-Destination Data (인천/나리타 공항의 여객기 출.도착 데이터를 이용한 항공노선 분석 연구)

  • Baik, Euiyoung;Cho, Jaehee
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.1
    • /
    • pp.87-106
    • /
    • 2013
  • This study is to explore the airline network patterns of Incheon and Narita International Airports using passenger flight departure and arrival data of the two airports. The so-called Origin-Destination data is collected from the airports' websites and some of the important data items are flight number, city of origin, destination city, departure/arrival time, number of flights, and delay time. A snowflake schema dimensional model is proposed and implemented. Tableau Public, a well-known visual analytic tool, is used to connect the dimensional model and played an important role in navigating the data space to find interesting and visual patterns among corresponding airports and airlines. For the efficiency of analyzing this spacious data mart, data visualization method was used. Four types of visualization method proposed by Yau was used; visualizing patterns over time, visualizing proportions, visualizing relationships, and visualizing spatial relationships. The strength of connectivity of each flight segments is calculated to evaluate the degree of globalization of Seoul and Tokyo. We anticipate that various patterns and new findings produced by the data mart would provide airline managers, airport authorities, and policy makers in the field of travel and transportation with insightful information.

In-Flight Prediction of Solid Rocket Motor Performance for Flight Control (비행제어를 위한 비행 중 고체로켓 추력 예측 방법)

  • Lee, Yong-In;Cho, Sungjin;Choe, Dong-Gyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.816-821
    • /
    • 2015
  • In this paper, an in-flight prediction method of thrust profiles for solid rocket motors is proposed. Actually, it is very difficult to have detailed information about the performance of the rocket motors beforehand because it is quite sensitive to combustion environments. To overcome this problem, we have developed an algorithm for generating in-flight prediction of rocket motor performance in realistic environments via a reference burnback profile and accelerations measured at a short time-interval just after launch. The performance is evaluated through a lot of flight test results.

Time of Fight Resonace Investigation of Amorphous Selenium Films (비정질 셀레늄 필름의 공명 비행시간 조사)

  • Park, J.K.;Park, S.K.;Lee, D.G.;Choi, J.Y.;Ahn, S.H.;Eun, C.K.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.501-504
    • /
    • 2001
  • We used time-of-flight method to analyze transport properties of charge carrier which is produced by X-ray exposure. It is the research of charge transport and specific property of trap that is performed in direct digital x-ray image receptor. But the results shows us different measurement value of electron and charge drift mobility and it is difficult to precise analysis about charge transport properties and trap mechanism. We measured transit time and drift mobility of charge carriers using time-of-flight method to evaluate the correlation of a-Se thickness change and electric field. We made a testing glass with a-Se of 400 ${\mu}m$ thickness on coming glass using thermoevaporation method and built Au electrode with 300nm, $2{\varphi}$ on both sides of a-Se, As a result of this experiment, electron and hole transit time was each $229.17{\mu}s$ and $8.73{\mu}s$ at $10V/{\mu}m$ electric field and Drift mobility was each $0.00174 cm^{2}/V{\cdot}s$, $0.04584cm^{2}/V{\cdot}s$.

  • PDF

Time of Flight Resonace Investigation of Amorphous Selenium Films (비정질 셀레늄 필름의 공명 비행시간 조사)

  • 박지군;박성광;이동길;최장용;안상호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.501-504
    • /
    • 2001
  • We used time-of-flight method to analyse transport properties of charge carrier which is produced by X-ray exposure. It is the research of charge transport and specific property of trap that is performed in direct digital x-ray image receptor. But the results shows us different measurement value of electron and charge drift mobility and it is difficult to precise analysis about charge transport properties and trap mechanism. We measured transit time and drift mobility of charge carriers using time-of-fight method to evaluate the correlation of a-Se thickness change and electric field. We made a testing glass with a-Se of 470 ${\mu}{\textrm}{m}$ thickness on corning glass using thermoevaporation method and built Au electrode with 300nm, 2$\phi$ on both sides of a-Se. As a result of this experiment, electron and hole transit time was each 229.17 $\mu$s and 8.737 $\mu$s at 10V/${\mu}{\textrm}{m}$ electric field and Drift mobility was each 0.00174 $\textrm{cm}^2$/V.s, 0.04584 $\textrm{cm}^2$/V.s.

  • PDF

Parameter Estimation of a Small-Scale Unmanned Helicopter by Automated Flight Test Method (자동화 비행시험기법에 의한 소형 무인헬리콥터의 파라메터 추정)

  • Bang, Keuk-Hee;Kim, Nak-Wan;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.916-924
    • /
    • 2008
  • In this paper dynamic modeling parameters were estimated using a frequency domain estimation method. A systematic flight test method was employed using preprogrammed multistep excitation of the swashplate control input. In addition when one axis is excited, the autopilot is engaged in the other axis, thereby obtaining high-quality flight data. A dynamic model was derived for a small scale unmanned helicopter (CNUHELI-020, developed by Chungnam National University) equipped with a Bell-Hiller stabilizer bar. Six degree of freedom equations of motion were derived using the total forces and moments acting on the small scale helicopter. The dynamics of the main rotor is simplified by the first order tip-path plane, and the aerodynamic effects of fuselage, tail rotor, engine, and horizontal/vertical stabilizer were considered. Trim analysis and linearized model were used as a basic model for the parameter estimation. Doublet and multistep inputs are used to excite dynamic motions of the helicopter. The system and input matrices were estimated in the frequency domain using the equation error method in order to match the data of flight test with those of the dynamic modeling. The dynamic modeling and the flight test show similar time responses, which validates the consequence of analytic modeling and the procedures of parameter estimation.

Evaluation of Thickness Reduction in an Aluminum Sheet using SH-EMAT (SH-EMAT를 이용한 알루미늄 박판의 두께감육 평가)

  • Kim, Yong-Kwon;Park, Ik-Kuen
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, a non-contact method of evaluating the thickness reduction in an aluminum sheet caused by corrosion and friction using SH-EMAT (shear horizontal, electromagnetic acoustic transducer) is described. Since this method is based on the measurement of the time-of-flight and amplitude change of guided waves caused from the thickness reduction, it provides information on the thinning defects. Information was obtained on the changes of the various wave features, such as their time-of-flight and amplitude, and their correlations with the thickness reduction were investigated. The interesting features in the dispersive behavior of selected guided modes were used for the detection of thinning defects. The measurements of these features using SH waves were performed on aluminum specimens with regions thinned by 7.2% to 29.5% of the total thickness. It is shown that the time-of-flight measurement provides an estimation of the thickness reduction and length of the thinning defects.

A new DPCM-based transmission scheme for flight data (차분펄스부호변조방식에 기반한 새로운 비행데이터 전송 기법)

  • Kang, Min-Woo;Moon, Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.149-157
    • /
    • 2011
  • In this paper, we propose a new DPCM-based transmission scheme for flight data. The amount of the flight data from LRU to MC has been increased due to the emergence and development of avionics systems and functions. It becomes a serious issue for satisfying the hard real-time processing required in the MC. In order to solve this problem, we observed the flight data produced by X-Plane simulator and discovered that the most flight data are moderately varied during flight. Based on this fact, a new data format is suggested by modifying that of ARINC-429 protocol in this paper. And the different value of the flight data is transmitted in the proposed scheme. The simulation results show that the proposed scheme achieves 20% data transfer gain compared to the ARINC-429 based transmission method.

Improved Calibration for the Analysis of Emerging Contaminants in Wastewater Using Ultra High Performance Liquid Chromatography and Time-of-Flight Mass Spectrometry

  • Pellinen, Jukka;Lepisto, Riikka-Juulia;Savolainen, Santeri
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.77-80
    • /
    • 2018
  • The focus of this paper is to present techniques to overcome certain difficulties in quantitative analysis with a time-of-flight mass spectrometer (TOF-MS). The method is based on conventional solid-phase extraction, followed by reversed-phase ultra high performance liquid chromatography of the extract, and mass spectrometric analysis. The target compounds included atenolol, atrazine, caffeine, carbamazepine, diclofenac, estrone, ibuprofen, naproxen, simazine, sucralose, sulfamethoxazole, and triclosan. The matrix effects caused by high concentrations of organic compounds in wastewater are especially significant in electrospray ionization mass spectroscopy. Internal-standard calibration with isotopically labeled standards corrects the results for many matrix effects, but some peculiarities were observed. The problems encountered in quantitation of carbamazepine and triclosan, due to nonlinear calibration were solved by changing the internal standard and using a narrower mass window. With simazine, the use of a quadratic calibration curve was the best solution.

Numerical Prediction of Rotor Tip-Vortex Roll-Up in Axial Flights by Using a Time-Marching Free-Wake Method

  • Chung, Ki-Hoon;Na, Seon-Uk;Jeon, Wan-Ho;Lee, Duck-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • The wake geometries of a two-bladed rotor in axial flights using a time-marching free-wake method without a non-physical model of the far wake are calculated. The computed free-wake geometries of AH-1G model rotor in climb flight are compared with the experimental visualization results. The time-marching free-wake method can predict the behavior of the tip vortex and the wake roil-up phenomena with remarkable agreements. Tip vortices shed from the two-bladed rotor can interact with each other significantly. The interaction consists of a turn of the tip vortex from one blade rolling around the tip vortex from the other. Wake expansion of wake geometries in radial direction after the contraction is a result of adjacent tip vortices begging to pair together and spiral about each other. Detailed numerical results show regular pairing phenomenon in the climb flights, the hover at high angle of attack and slow descent flight too. On the contrary, unstable motions of wake are observed numerically in the hover at low angle of attack and fast descent flight. It is because of the inherent wake instability and blade-vortex-interaction rather then the effect of recirculation due to the experimental equipment.

  • PDF

Equivalence of the times of flight by ultrasonic energy and phase velocities and determination of the elastic constants of anisotropic materials (초음파의 에너지속도와 위상속도의 주행시간 동시성과 이방성 재료의 탄성계수 결정)

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.95-103
    • /
    • 1994
  • The purpose of this paper is to provide the experimenters who use the oblique incidence ultrasonic method for anisotropic elastic constants measurement eith some useful relations. In particular, the equivalence of the times of flight by the energy ad phase velocities, which is key to the oblique incidence method, is proved explicitly. This equivalence greatly simplifies the analysis of immersion measurement results. In oredr to correctly measure the transit time of an immersed sample using the oblique incidence, the receiving transducer should be shifted laterally, and an expression in given for this shift. A method for determining all nine elastic constants of an orthotropic material is briefly described and the measurement results are listed for SiC particulate reinforced A1 matrix composites.

  • PDF