• 제목/요약/키워드: Time of Flight Diffraction (TOFD)

검색결과 11건 처리시간 0.024초

FEM Model-Based Investigation of Ultrasonic TOFD for Notch Inspection

  • Tang, Ziqiao;Yuan, Maodan;Wu, Hu;Zhang, Jianhai;Kim, Hak-Joon;Song, Sung-Jin;Kang, Sung-Sik
    • 비파괴검사학회지
    • /
    • 제34권1호
    • /
    • pp.1-9
    • /
    • 2014
  • A two-dimensional numerical model based on the finite element method was built to simulate the wave propagation phenomena that occur during the ultrasonic time of flight diffraction (TOFD) process. First, longitudinal-wave TOFD was simulated, and the numerical results agreed well with the theoretical results. Shear-wave TOFD was also investigated because shear waves have higher intensity and resolution. The shear wave propagation was studied using three models with different boundary conditions, and the tip-diffracted shear-to-longitudinal wave was extracted from the A-scan signal difference between the cracked and non-cracked specimens. This signal showed very good agreement between the geometrical and numerical arrival times. The results of this study not only provide better understanding of the diffraction phenomena in TOFD, but also prove the potential of shear-wave TOFD for practical application.

TOFD 법에서의 근거리 분해능 향상에 관한 연구 (Deconvolution Method for TOFD Technique)

  • 이순흠;김선형;공용해;이원흠
    • 비파괴검사학회지
    • /
    • 제19권6호
    • /
    • pp.420-425
    • /
    • 1999
  • Time of flight diffraction(TOFD)법은 초음파의 회절현상을 이용한 검사방법으로 일반적인 pulse echo 법에 비해 검사수행 속도가 빠르며, 보다 알기 쉽게 결함을 유무를 표시하고 검사표면의 상태와 결함의 방향에 의한 검사 결과가 기존에 방법에 비해 안정적인 특징을 갖는다. 그러나 TOFD 법은 결함의 위치가 검사체의 표면 근처에 위치하는 경우 표면을 따라 전파되는 lateral wave의 영향으로 결함의 검출에 어려움이 따른다. 본 연구에서는 TOFD 법을 이용한 초음파 탐상 시스템을 개발하였고, TOFD 법의 단점이라 할 수 있는 표면 근처에 존재하는 결함을 보다 쉽게 검출하기 위하여 deconvolution 법을 사용하여 근거리 분해능을 향상시켰다.

  • PDF

STS304 스테인리스강 용접부 결함평가에 대한 Pulse-echo법과 TOFD법의 비교연구 (A Comparative Study of Pulse-echo Method and TOFD Method for the Defect in the Welding Joint of the STS304 Stainless Steel)

  • 길두송;최원두
    • 동력기계공학회지
    • /
    • 제6권4호
    • /
    • pp.68-72
    • /
    • 2002
  • For the evaluation of a flaw in a welded stainless steel by the Time of Flight Diffraction(TOFD) Method, we have made the reference specimen for experimentation. As a result, we could analyze a specific character and the inner state of the structure in a welded stainless steel and we came to the conclusion as followed. (1) For analyze the structure state of a section in a welded stainless steel through the optical microscope, we could have analyzed the generated shape and the location of a flaw and the inner parts of the structure state through the microscope of eighty magnification and two hundred magnification about the soundness, the heat affected zone(HAZ) and the welded part. (2) Through the comparison with the shape and the size of a flaw in the welded part about the conventional ultrasonic test and the TOFD Method, we could make an observation the special character of the TOFD Method and principles. (3) We analyzed and collected the merit of the TOFD Method on the basis of the experimental result by the shape and the size of a flaw in the inner welded parts. So, we made up a base that we could use as a basic data for a similar flaw like that. Through the study as mentioned above, we could make an observation the flaw detective method and principles used in the TOFD Method.

  • PDF

Identification of nonregular indication according to change of grain size/surface geometry in nuclear power plant (NPP) reactor vessel (RV)-upper head alloy 690 penetration

  • Kim, Kyungcho;Kim, Changkuen;Kim, Hunhee;Kim, Hak-Joon;Kim, Jin-Gyum;Jhung, Myungjo
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1524-1536
    • /
    • 2017
  • During the fabrication process of reactor vessel head penetration (RVHP), the grain size of the tube material can be changed by hot or cold work and the inner side of the tube can also be shrunk due to welding outside of the tube. Several nonregular time-of-flight diffraction (TOFD) signals were found because of deformed grains. In this paper, an investigation of nonregular TOFD indications acquired from RVHP tubes using experiments and computer simulation was performed in order to identify and distinguish TOFD signals by coarse grains from those by Primary Water Stress Corrosion Crack (PWSCC). For proper understanding of the nonregular TOFD indications, microstructural analysis of the RVHP tubes and prediction of signals scattered from the grains using Finite Element Method (FEM) simulation were performed. Prediction of ultrasonic signals from the various sizes of side drilled holes to find equivalent flaws, determination of the size of the nonregular TOFD indications from the coarse grains, and experimental investigation of TOFD signals from coarse grain and shrinkage geometry to identify PWSCC signals were performed. From the computer simulation and experimental investigation results, it was possible to obtain the nonregular TOFD indications from the coarse grains in the alloy 690 penetration tube of RVHP; these nonregular indications may be classified as PWSCC. By comparing the computer simulation and experimental results, we were able to confirm a clear difference between the coarse grain signal and the PWSCC signal.

원자로 상부 헤드 관통관 TOFD 신호 시뮬레이션 (Simulation of Time of Flight Diffraction Signals for Reactor Vessel Head Penetrations)

  • 이태훈;김용식;이정석
    • 비파괴검사학회지
    • /
    • 제36권4호
    • /
    • pp.273-280
    • /
    • 2016
  • 비파괴검사 분야에 대한 시뮬레이션은 다양한 결함에 대한 신호의 예측과 검사 절차 개발에 사용되어진다. 특히 비파괴검사 전용 시뮬레이션 툴인 CIVA는 정확도가 높고 빠른 계산이 가능하며, 비파괴평가 기술과 동일한 형태의 화면 표시와 시각적으로 개선된 3차원 그래픽 유저 인터페이스를 제공한다. CIVA 소프트웨어 개발자가 내부적으로 타당성 검증을 시행하겠지만, 사용 이전에 소프트웨어의 정확도를 평가하는 독립적인 유효성 검증 연구가 필요하다. 이러한 목적으로 이번 연구에서는 CIVA를 이용하여 원자로 상부 헤드 관통관 검사에 사용되는 보정시험편에 대하여 TOFD 신호를 시뮬레이션하고, 실제 검사 신호와 비교하여 시뮬레이션 신호의 정확도와 적용 범위에 대하여 검증하였다. 종합적으로, A-scan 신호, B-scan 이미지, 깊이 측정 측면에서 CIVA 시뮬레이션 결과와 실험 결과 간에 전반적으로 일치를 보였다.

모의 시험편에 대한 TOFD와 방사선투과시험의 비교 (Comparison of TOFD and Radiographic Testing for a Mock-up Specimen)

  • 김중직;전종건;김진택
    • 비파괴검사학회지
    • /
    • 제28권1호
    • /
    • pp.64-69
    • /
    • 2008
  • 압력용기 및 구조물 용접부의 내부결함을 검출하기 위해서는 방사선투과시험과 초음파탐상시험을 시행한다. 그러나 방사선투과시험은 방사선 노출 위험성과 필름 현상처리 소요 등으로 결과의 확인에 상대적으로 긴 시간이 소요되어 제작 공정에 영향을 준다. 일반적인 수동 초음파탐상시험은 결과의 재현이 용이하지 않으며 검사자의 기량에 대한 의존도가 높다는 문제점을 가지고 있다. 이에 대한 대안으로 자동 초음파탐상시험 기법의 하나인 TOFD의 적용이 확산되고 있다. 본 연구는 결함을 포함한 시험편에 대하여 방사선투과 시험과 TOFD 기법을 적용하고 비교한 결과를 기술하였다. TOFD 기법은 초음파 시험기법의 객관적 신뢰도 향상에 기여하게 될 것으로 판단된다.

TOFD 기법을 활용한 원자로 상부헤드관통부 오버레이 용접부 결함 검출 가능성 평가 (A Feasibility Test for Flaw Detection in Overlay Weld of Reactor Upper Head Penetration Using Time of Flight Diffraction Technique)

  • 이정석;김진회
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.15-19
    • /
    • 2014
  • A Failure or degradation of reactor upper head penetration is a recurring problem due to long term operation at nuclear power plants. And a flaw in the reactor upper head penetration has caused unplanned plant shutdown for repair as well as high economic impact on the plants. Consequently, a detection of flaws is of the utmost importance. Prior to the replacement of reactor upper head penetration, some utilities have repaired the flaws of reactor upper head penetration generated by overlay weld. Until now, only the base metal in reactor upper head penetration has been inspected according to 10 CFR 50.55a and ASME code case N-729-1. Accordingly, it is difficult to detect manufacturing defects and repair defects in overlay weld. This paper presents a case study on the application of Time of Flight Diffraction technique for reactor head penetration mockup with artificial flaws in overlay weld. This study offers a way to understand the flaws detected in reactor upper head penetration overlay weld.

TOFD UT 기법을 활용한 원자로 상부헤드관통부 J-groove 용접부 결함 검출 가능성 평가 (A Feasibility Study for Flaw Detection in J-groove Weld of Reactor Upper Head Penetration Using Time of Flight Diffraction UT Technique)

  • 이정석;이태훈;김용식
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.1-5
    • /
    • 2015
  • A failure or degradation of reactor upper head penetration is a troublesome problem at Nuclear Power Plants. A flaw in the reactor upper head penetration can result in unplanned plant shutdown for repair, and cause serious economic losses on the plants. Consequently, a detection of flaws is a matter of more importance. Until now, only the base metal, not including J-groove weld, in reactor upper head penetration has been inspected in accordance with 10 CFR 50.55a and ASME code case N-729-1 requirements. Accordingly, it is rather difficult to detect manufacturing defects and repair defects in J-groove weld. This paper presents a case study on the application of Time of Flight Diffraction UT technique to examine the J-groove weld in reactor head penetration using reactor head penetration mockup with artificial flaws. We expect that this study result will offer a way to understand the non-destructive examination technology for J-groove weld in reactor upper head penetration.

원자로헤드 관통관 결함의 검출 정확성 연구 (A Study I on the Sizing Accuracy of the Characterized Defects of the Reactor Vessel Head Penetrations)

  • 정태훈;김한종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.216-227
    • /
    • 2005
  • The head penetrations for control rod drive mechanism and instrumentation systems are installed at the reactor pressure vessel head of PWRs. Primary coolant water and the operating conditions of PWR plants can cause cracking of these nickel-based alloy through a process called primary water stress corrosion cracking (PWSCC). Inspection of the head penetrations to ensure the integrity of the head penetrations has been interested since reactor coolant leakages were found at U. S. reactors in 2000 and 2001. The complex geometry of the head penetrations and the very low echo amplitude from the fine, multiple flaws due to the nature of the see made it difficult to detect and size the flaws using conventional pulse-echo UT methods. Time-of-flight-diffraction technique, which utilizes the time difference between the flaw tips while pulse-echo does the flaw response amplitude from the flaw, has been selected for this inspection for it's best performance of the detection and sizing of the head penetration see flaws. This study defines the limits of the detectable and accurately sizable minimum flaw size which can be detected by the General TOFD and the Delta TOFD techniques for circumferentially and axially oriented flaws respectively. These results assures the reliability of the inspection techniques to detect and accurately size for various kind of flaws, and will also be utilized for the future development and qualifications of the TOFD techniques to enhance the detecting sensitivity and sizing accuracy of the flaws of the reactor head penetrations in nuclear power plants.

  • PDF

Detection of near surface rock fractures using ultrasonic diffraction techniques

  • Selcuk, Levent
    • Geomechanics and Engineering
    • /
    • 제17권6호
    • /
    • pp.597-606
    • /
    • 2019
  • Ultrasonic Time-of-Flight Diffraction (TOFD) techniques are useful methods for non-destructive evaluation of fracture characteristics. This study focuses on the reliability and accuracy of ultrasonic diffraction methods to estimate the depth of rock fractures. The study material includes three different rock types; andesite, basalt and ignimbrite. Four different ultrasonic techniques were performed on these intact rocks. Artificial near-surface fracture depths were created in the laboratory by sawing. The reliability and accuracy of each technique was assessed by comparison of the repeated measurements at different path lengths along the rock surface. The standard error associated with the predictive equations is very small and their reliability and accuracy seem to be high enough to be utilized in estimating the depth of rock fractures. The performances of these techniques were re-evaluated after filling the artificial fractures with another material to simulate natural infills.