• 제목/요약/키워드: Time diversity gain

검색결과 152건 처리시간 0.027초

Performance Evaluation of Channel Estimation for WCDMA Forward Link with Space-Time Block Coding Transmit Diversity (시공간 블록 부호 송신 다이버시티를 적용한 WCDMA 하향 링크에서 채널 추정기의 성능 평가)

  • 강형욱;이영용;김용석;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제28권6A호
    • /
    • pp.341-350
    • /
    • 2003
  • In this paper, we evaluate the performance of a moving average (MA) channel estimation filter when space-time block coding transmit diversity (STBC-TD) is applied to the wideband direct sequence code division multiple access (WCDMA) forward link. And we present the infinite impulse response (IIR) filter scheme that can reduce the required memory buffer and the channel estimation delay time. This paper also compares the performance between MA filter scheme and IIR filter scheme in various Rayleigh fading channel environments through the bit error rate (BER) and the frame error rate (FER). Extensive computer simulation results show that transmission with STBC-TD provides a significant gain in performance over no transmit diversity technique, particularly at pedestrian speeds. If STBC-TD technique is employed in the channel estimator based on MA filter, it provides considerable performance gains against Rayleigh fading and reduces the optimum filter tap number. Consequently, the channel estimation delay time and the complexity of the receiver are reduced. In addition, the channel estimator based on IIR filter has the advantages such as little memory requirement and no delay time compared to the MA scheme. However, IIR filter coefficients is very sensitive to the mobile speed change and it exerts a serious influence upon the performance. For that reason, it is important to set uP the optimum IIR filter coefficients.

Performance Analysis of QoS control scheme for PoC services with multiple sessions under the radio channel environment (무선채널을 포함한 다중세션 품질제어에 의한 PoC서비스의 QoS보장 절차의 제안 및 성능분석)

  • Cho, Mi-Jin;Kim, Jeong-Ho;Lee, Ji-Hye;Kim, Wuk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제46권5호
    • /
    • pp.122-129
    • /
    • 2009
  • In this paper, we have proposed the QoS (quality of services) control scheme which can adjust data transfer rates of the session participants in response to their radio channel conditions under the time-varying propagation radio environment. The outage probability is selected as the performance index in order to compare the performance of the proposed scheme with the conventional QoS control scheme. The outage probability of the single and multiple paths is mathematically derived here and its numerical results are investigated. The results show that the significant performance improvement can be obtained compared with the conventional scheme and also the diversity gain can improve the radio link outage as the degrees of the multipath diversity increases. Therefore the overall performance improvement in terms of the QoS of the outage probability can be significantly be achieved by applying the proposed scheme.

Performance Analysis of STBC System Combined with Convolution Code fot Improvement of Transmission Reliability (전송신뢰성의 향상을 위해 STBC에 컨볼루션 코드를 연계한 시스템의 성능분석)

  • Shin, Hyun-Jun;Kang, Chul-Gyu;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • 제15권6호
    • /
    • pp.1068-1074
    • /
    • 2011
  • In this paper, the proposed scheme is STBC(space-time block codes) system combined with convolution code which is the most popular channel coding to ensure the reliability of data transmission for a high data rate wireless communication. The STBC is one of MIMO(multi-input multi-output) techniques. In addition, this scheme uses a modified viterbi algorithm in order to get a high system gain when data is transmitted. Because we combine STBC and convolution code, the proposed scheme has a little high quantity of computation but it can get a maximal diversity gain of STBC and a high coding gain of convolution code at the same time. Unlike existing viterbi docoding algorithm using Hamming distance in order to calculate branch matrix, the modified viterbi algorithm uses Euclidean distance value between received symbol and reference symbol. Simulation results show that the modified viterbi algorithm improved gain 7.5 dB on STBC 2Tx-2Rx at $BER=10^{-2}$. Therefore the proposed scheme using STBC combined with convolution code can improve the transmission reliability and transmission efficiency.

Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier

  • Akhlaghi, Majid;Emami, Farzin
    • Journal of the Optical Society of Korea
    • /
    • 제17권3호
    • /
    • pp.237-241
    • /
    • 2013
  • This paper presents an efficient evolutionary method to optimize the gain ripple of multi-pumps photonic crystal fiber Raman amplifier using the Fuzzy Adaptive Modified PSO (FAMPSO) algorithm. The original PSO has difficulties in premature convergence, performance and the diversity loss in optimization as well as appropriate tuning of its parameters. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated and results are compared with the PSO algorithm. It is shown that FAMPSO has a high quality solution, superior convergence characteristics and shorter computation time.

Theory and Design of Near-Optimal MIMO OFDM Transmission System for Correlated Multipath Rayleigh Fading Channels

  • Hung, Kun-Chien;Lin, David W.
    • Journal of Communications and Networks
    • /
    • 제9권2호
    • /
    • pp.150-158
    • /
    • 2007
  • We consider channel-coded multi-input multi-output (MIMO) orthogonal frequency-division multiplexing (OFDM) transmission and obtain a condition on its signal for it to attain the maximum diversity and coding gain. As this condition may not be realizable, we propose a suboptimal design that employs an orthogonal transform and a space-frequency interleaver between the channel coder and the multi-antenna OFDM transmitter. We propose a corresponding receiving method based on block turbo equalization. Attention is paid to some detailed design of the transmitter and the receiver to curtail the computational complexity and yet deliver good performance. Simulation results demonstrate that the proposed transmission technique can outperform the conventional coded MIMO OFDM and the MIMO block single-carrier transmission with cyclic prefixing.

Optimal Power Allocation and Outage Analysis for Cognitive MIMO Full Duplex Relay Network Based on Orthogonal Space-Time Block Codes

  • Liu, Jia;Kang, GuiXia;Zhu, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권3호
    • /
    • pp.924-944
    • /
    • 2014
  • This paper investigates the power allocation and outage performance of MIMO full-duplex relaying (MFDR), based on orthogonal space-time block codes (OSTBC), in cognitive radio systems. OSTBC transmission is used as a simple means to achieve multi-antenna diversity gain. Cognitive MFDR systems not only have the advantage of increasing spectral efficiency through spectrum sharing, but they can also extend coverage through the use of relays. In cognitive MFDR systems, the primary user experiences interference from the secondary source and relay simultaneously, owing to full duplexing. It is therefore necessary to optimize the transmission powers at the secondary source and relay. In this paper, we propose an optimal power allocation (OPA) scheme based on minimizing the outage probability in cognitive MFDR systems. We also analyse the outage probability of the secondary user in noise-limited and interference-limited environments in Nakagami-m fading channels. Simulation results show that the proposed schemes achieve performance improvements in terms of reducing outage probability.

Soft Decision Detection Method for Turbo-coded STBC Using High-order Modulation Schemes (고차원 변조 방식에서의 터보 부호화된 시공간 블록 부호 기술을 위한 최적의 연판정 검출 방법)

  • Kim, Young-Min;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제35권6C호
    • /
    • pp.562-571
    • /
    • 2010
  • Forward error correction (FEC) coding schemes using iterative soft decision detection (SDD) information are mandatory in most of the next generation wireless communication system, in order to combat inevitable channel imparirnents. At the same time, space-time block coding (STBC) schemes are used for the diversity gain. Therefore, SDD information has to be fed into FEC decoder. In this paper, we propose efficient SDD methods for turbo-coded STBC system using high order modulation such as QAM. We present simulation results of various SDD schemes for turbo-coded STBC systems, and show that the proposed methods can provide almost approximating performance to maximum likelihood detection with much less computational load.

Performance Improvement of WCDMA Downlink Systems Using Space Time Block Coding (STBC를 이용한 WCDMA 순방향 링크 시스템의 성능개선)

  • 박정숙;박중후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권4A호
    • /
    • pp.423-428
    • /
    • 2004
  • High-data rate and high speed communication techniques are required for wireless mobile communication systems to provide multimedia services. A multiple antenna technology may be used to meet this demand. In this paper, a method for performance improvement of a WCDMA downlink system using space time block coding is proposed in quasi-static Rayleigh fading channels. The proposed receiver uses the cross correlation matrix obtained by each finger corresponding to multi paths. To obtain maximum diversity gain, the inverse of cross correlation matrix and the Hermitian matrix of the channel matrix for each path arc computed, and then applied to received signals. Various simulation results show that the proposed receiver outperforms a conventional receiver in Rayleigh fading channels.

Space-Time Concatenated Convolutional and Differential Codes with Interference Suppression for DS-CDMA Systems (간섭 억제된 DS-CDMA 시스템에서의 시공간 직렬 연쇄 컨볼루션 차등 부호 기법)

  • Yang, Ha-Yeong;Sin, Min-Ho;Song, Hong-Yeop;Hong, Dae-Sik;Gang, Chang-Eon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제39권1호
    • /
    • pp.1-10
    • /
    • 2002
  • A space-time concatenated convolutional and differential coding scheme is employed in a multiuser direct-sequence code-division multiple-access(DS-CDMA) system. The system consists of single-user detectors (SUD), which are used to suppress multiple-access interference(MAI) with no requirement of other users' spreading codes, timing, or phase information. The space-time differential code, treated as a convolutional code of code rate 1 and memory 1, does not sacrifice the coding efficiency and has the least number of states. In addition, it brings a diversity gain through the space-time processing with a simple decoding process. The iterative process exchanges information between the differential decoder and the convolutional decoder. Numerical results show that this space-time concatenated coding scheme provides better performance and more flexibility than conventional convolutional codes in DS-CDMA systems, even in the sense of similar complexity Further study shows that the performance of this coding scheme applying to DS-CDMA systems with SUDs improves by increasing the processing gain or the number of taps of the interference suppression filter, and degrades for higher near-far interfering power or additional near-far interfering users.

Low Density Parity Check (LDPC) Coded OFDM System Using Unitary Matrix Modulation (UMM) (UMM(Unitary Matrix Modulation)을 이용한 LDPC(Low Density Parity Check) 코디드 OFDM 시스템)

  • Kim Nam Soo;Kang Hwan Min;Cho Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제30권5A
    • /
    • pp.436-444
    • /
    • 2005
  • Unitary matrix modulation (UMM) is investigated in multiple antennas system that is called unitary space-time modulation (USTM). In an OFDM, the diagonal components of UMM with splitting over the coherence bandwidth (UMM-S/OFDM) have been proposed. Recently LDPC code is strongly attended and studied due to simple decoding property with good error correction property. In this paper, we propose LDPC coded UMM-S/OFDM for increasing the system performance. Our proposed system can obtain frequency diversity using UMM-S/OFDM like USTM/OFDM, and large coding gain using LDPC code. The superior characteristics of the proposed UMM-S/OFDM are demonstrated by extensive computer simulations in multi-path Rayleigh fading channel.