• 제목/요약/키워드: Time dispersion

검색결과 988건 처리시간 0.03초

TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • Liu, F.;Anh, V.V.;Turner, I.;Zhuang, P.
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.233-245
    • /
    • 2003
  • A time fractional advection-dispersion equation is Obtained from the standard advection-dispersion equation by replacing the firstorder derivative in time by a fractional derivative in time of order ${\alpha}$(0 < ${\alpha}$ $\leq$ 1). Using variable transformation, Mellin and Laplace transforms, and properties of H-functions, we derive the complete solution of this time fractional advection-dispersion equation.

A Simple Mlodel for Dispersion in the Stable Boundary Layer

  • Sung-Dae Kang;Fuj
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1992
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are "A" and "B" at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.al dispersion model.

  • PDF

유도 초음파 신호 분석을 위한 적응 단시간 푸리에 변환 (Adaptive Short-time Fourier Transform for Guided-wave Analysis)

  • 홍진철;선경호;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.266-271
    • /
    • 2005
  • Although time-frequency analysis is useful for dispersive wave analysis, conventional methods such as the short-time Fourier transform do not take the dispersion phenomenon into consideration in the tiling of the time-frequency domain. The objective of this paper is to develop an adaptive time-frequency analysis method whose time-frequency tiling is determined with the consideration of signal dispersion characteristics. To achieve the adaptive time-frequency tiling, each of time-frequency atoms is rotated in the time-frequency plane depending on the local wave dispersion. To carry out this adaptive time-frequency transform, dispersion characteristics hidden in a signal are first estimated by an iterative scheme. To examine the effectiveness of the present method, the flexural wave signals measured in a plate were analyzed.

유도 초음파 신호 분석을 위한 적응 단시간 푸리에 변환 (Adaptive Short-time Fourier Transform for Guided-wave Analysis)

  • 선경호;홍진철;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.606-610
    • /
    • 2004
  • Although time-frequency analysis is useful for dispersive wave analysis, conventional methods such as the short-time Fourier transform do not take the dispersion phenomenon into consideration in the tiling of the time-frequency domain. The objective of this paper is to develop an adaptive time-frequency analysis method whose time-frequency tiling is determined with the consideration of signal dispersion characteristics. To achieve the adaptive time-frequency tiling, each of time-frequency atoms is rotated in the time-frequency plane depending on the local wave dispersion. To carry out this adaptive time-frequency transform, dispersion characteristics hidden in a signal are first estimated by an iterative scheme. To examine the effectiveness of the proposed method, the flexural wave signals measured in a plate were analyzed.

  • PDF

발포용 PU/MWNT 복합필름의 제조와 특성분석 (Manufacturing and Characteristics Analysis of PU/MWNT Composite Film for Forming)

  • 박준형;김정현;김승진
    • 한국염색가공학회지
    • /
    • 제22권4호
    • /
    • pp.362-372
    • /
    • 2010
  • This paper surveys the physical properties of the multiwall carbon nanotube (MWNT) and polyurethane composite film for improvement of mechanical properties and electrical characteristics. The modification of MWNT was carried out by acid treatment with nitric and sulphuric acid mixed solution, and then followed by thermal treatment for enhancing MWNT dispersion with polyurethane. This modified MWNT was mixed with polyurethane by changing the loading content of MWNT and dispersion time under the dimethylformamide solution in the ultrasonic wave apparatus. Various physical characteristics of the modified PU/MWNT films were measured and analyzed in terms of the loading content and dispersion time. The maximum absorbance of the PU/MWNT films were observed with the 2wt% loading at dispersion times of 2 and 24 hour, respectively. The minimum electrical volume resistivity of PU/MWNT film was shown at the loading content of 0.5wt% or more irrespective of dispersion treating time. However the optimum condition was assumed to 2wt% loading at dispersion time of 2 hours by assessing the surface profile of the film using video microscope. The breaking stress and strain of the PU/MWNT film decreased with increasing loading content, but no change of physical properties was shown with increasing in dispersion time.

EFFECT OF FLOW UNSTEADINESS ON DISPERSION IN NON-NEWTONIAN FLUID IN AN ANNULUS

  • NAGARANI, P.;SEBASTIAN, B.T.
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.241-260
    • /
    • 2017
  • An analysis is made to study the solute transport in a Casson fluid flow through an annulus in presence of oscillatory flow field and determine how this flow influence the solute dispersion along the annular region. Axial dispersion coefficient and the mean concentration expressions are calculated using the generalized dispersion model. Dispersion coefficient in oscillatory flow is found to be a function of frequency parameter, Schmidt number, and the pressure fluctuation component besides its dependency on yield stress of the fluid, annular gap and time in the case of steady flow. Due to the oscillatory nature of the flow, the dispersion coefficient changes cyclically and the amplitude and magnitude of the dispersion increases initially with time and reaches a non - transient state after a certain critical time. This critical value varies with frequency parameter and independent of the other parameters. It is found that the presence of inner cylinder and increase in the size of the inner cylinder inhibits the dispersion process. This model may be used in understanding the dispersion phenomenon in cardiovascular flows and in particular in catheterized arteries.

Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.195-205
    • /
    • 2018
  • Research on Lamb wave-based damage identification in plate-like structures depends on precise knowledge of dispersive wave velocity. However, boundary reflections with the same frequency of interest and greater amplitude contaminate direct waves and thus compromise measurement of Lamb wave dispersion in different materials. In this study, non-reflecting boundaries were proposed in both numerical and experimental cases to facilitate time-frequency characterization of Lamb wave dispersion. First, the Lamb wave equations in isotropic and laminated materials were analytically solved. Second, the non-reflecting boundaries were used as a series of frames with gradually increased damping coefficients in finite element models to absorb waves at boundaries while avoiding wave reflections due to abrupt property changes of each frame. Third, damping clay was sealed at plate edges to reduce the boundary reflection in experimental test. Finally, the direct waves were subjected to the slant-stack and short-time Fourier transformations to calculate the dispersion curves of phase and group velocities, respectively. Both the numerical and experimental results suggest that the boundary reflections are effectively alleviated, and the dispersion curves generated by the time-frequency analysis are consistent with the analytical solutions, demonstrating that the combination of non-reflecting boundary and time-frequency analysis is a feasible and reliable scheme for characterizing Lamb wave dispersion in plate-like structures.

A New Driving Scheme for Reduction of Addressing time and its Dispersion in AC PDP

  • Lee, Sung-Hyun;Kim, Dong-Hyun;Park, Cha-Soo;Park, Chung-Hoo;Ryu, Jae-Hwa
    • Journal of Information Display
    • /
    • 제2권2호
    • /
    • pp.39-44
    • /
    • 2001
  • The conditions of the wall charges and priming particles in a unit discharge cell in AC PDP seriously affect the addressing discharge characteristics in the driving method with ramped setup pulse. Moreover, the discharge conditions at the end of the scan line may be different from the first scan line because of the difference of about 1ms address time. Consequently, the addressing time and its dispersion may be different for any two discharge cells that lead to misfiring and the increase in the total addressing time. In order to improve the addressing time and its dispersion, we have applied different addressing voltage at each cell such as progressively increase pulse voltage instead of constant one. As a result, the addressing time and its dispersion of all cells were improved by about 30% compared with the conventional driving method.

  • PDF

A Simple Model for Dispersion in the Stable Boundary Layer

  • Kang Sung-Dae;Kimura Fujio;Lee Hwa-Woon;Kim Yoo-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1997
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are 'A' and 'B' at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.

  • PDF

램파의 분산성과 파 반사가 시간반전과정에 미치는 영향의 이해 (Understanding the Effects of the Dispersion and Reflection of Lamb Waves on a Time Reversal Process)

  • 박현우;김승범;손훈
    • 한국전산구조공학회논문집
    • /
    • 제22권1호
    • /
    • pp.89-103
    • /
    • 2009
  • 이 연구에서는 얇은 판형구조물의 손상탐지에 널리 사용되어오는 램파에 시간반전(time reversal)개념의 적용성을 이론적으로 규명한다. 고전적 시간반전 음향학에 의하면, 센서에서의 출력신호를 시간영역에서 반전 후 재입사시켜 원래의 가진점으로 돌려보내면, 그 가진점에서 원래 입력신호가 복원된다. 그러나 램파에 시간반전과정을 적용하게 되면 램파 고유의 분산성과 판 경계에서의 파 반사로 인해 시간반전성이 복잡한 양상을 띠게 된다. 이러한 램파의 시간반전성을 보다 잘 이해하기 위해 이 연구에서는 램파의 시간반전과정을 이론적으로 규명한다. 특히, 램파의 내부모드분산, 다중모드분산, 그리고 판 경계면에서의 램파의 반사가 시간반전성에 미치는 영향을 정식화하였다 간단한 수치예제를 통해 이 연구에서 제시된 이론적 발견들의 타당성을 검증한다.