• Title/Summary/Keyword: Time control

Search Result 29,584, Processing Time 0.061 seconds

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

An Overview of Learning Control in Robot Applications

  • Ryu, Yeong-Soon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.6-10
    • /
    • 1996
  • This paper presents an overview of research results obtained by the authors in a series of publications. Methods are developed both for time-varying and time-invariant for linear and nonlinear. for time domain and frequency domain . and for discrete-time and continuous-time systems. Among the topics presented are: 1. Learning control based on integral control concepts applied in the repetition domain. 2. New algorithms that give improved transient response of the indirect adaptive control ideas. 4. Direct model reference learning control. 5 . Learning control based frequency domain. 6. Use of neural networks in learning control. 7. Decentralized learning controllers. These learning algorithms apply to robot control. The decentralized learning control laws are important in such applications becaused of the usual robot decentralized controller structured.

  • PDF

PICNET Network Configurator for Distributed Control System

  • Kim, Dong-Sung;Lee, Jae-Young;Jun, Tae-Soo;Moon, Hong-Ju;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.100-103
    • /
    • 1999
  • In this paper, a method for the efficient implementation of the PICNET network configurator for a distributed control system(DCS) is proposed. The network configurator is composed of the time parameter estimator and the period scheduler, the file generator. The main role of network configurator estimates time parameter, the pre-run time scheduling of the user input and make the period transmission table for operating the PICNET based distributed control system.

  • PDF

Receding horizon tracking control as a predicitive control for the continuous-time systems

  • Noh, Seon-Bong;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1055-1059
    • /
    • 1990
  • This paper proposed a predictive tracking controller for the continuous-time systems by using the receding horizon concept in the optimal tracking control. This controller is the continuous-time version of the previous RHTC (Receding Horizon Tracking Control) for the discrete-time state space models. The problems in implementing the feedforward part of this controller is discussed and a approximate method of implementing this controller is presented. This approximate method utilizes the information of the command signals on the receding horizon and has simple constant feedback and feedforward gain. To perform the offset free control, the integral action is included in the continuous time RHTC. By simulation it is shown that the proposed method gives better performance than the conventional steady state tracking control.

  • PDF

Analysis to reduce the acceleration time and deceleration time of direct drive robot (직접구동형로봇의 가감속시간 단축에 관한 연구)

  • 임규영;이광남;고광일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.372-376
    • /
    • 1990
  • This paper represents a control method of improving the performance of direct drive robot. The direct transfer of torque and rotational speed of direct drive motor to the robot body without reduction gear makes the robot speed fast. However, the variation of inertia matrix and low friction cause the control difficult, and one more effort must be in the reducing the acceleration and deceleration time to reduce the cycle time. To fasten the cycle time and to improve the robustness of robot, one control method is developed, and implemented in the Goldstar DD robot. This method does not need to change the conventional PI type control structure, but one additional compensational control law is required. The control law can be obtained via inverse dynamic model of robot, and inverse model of existing control loop. The effects of this control law are shown in this paper.

  • PDF

Compensation of the Rotor Time Constant using Fuzzy Controller in Induction Motor Vector Control (유도전동기 벡터제어에서 퍼지제어기에 의한 시정수 보상)

  • Cha Duck-Gun;Park Jae-Sung;Park Gun-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.21-24
    • /
    • 2002
  • The vector control system of an induction motor is the high performance drive system to achieve the instantaneous torque control. The vector control system is greatly divided into the direct control, and the indirect control that the most widely is used, The indirect vector control needs the rotor time constant, which changes widely according to the temperature, frequency, and current amplitude. The incorrect time constant leads to the saturation of magnetic flux or under-excitation phenomena. As a result, that deteriorate the control performance. Therefore, in this paper, the effect of time constant variation is investigated and its on-line tuning algorithm is proposed. The time constant using the torque angles was calculated and that of the validity of algorithm proposed was proved through the computer simulation and the experiment.

  • PDF

The Congestion Control using Selective Slope Control under Multiple Time Scale of TCP (TCP의 다중 시간 간격에서 선택적 기울기 제어를 이용한 혼잡 제어)

  • Kim, Gwang-Jun;Kang, Ki-Woong;Lim, Se-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • In this paper, we extend the multiple time scale control framework to window-based congestion control, in particular, TCP. This is performed by interfacing TCP with a large time scale control module which adjusts the aggressiveness of bandwidth consumption behavior exhibited by TCP as a function of "large time scale" network state. i.e., conformation that exceeds the horizon of the feedback loop as determined by RTT. Performance evaluation of multiple time scale TCP is facilitated by a simulation bench-mark environment which is based on physical modeling of self-similar traffic. If source traffic is not extended exceeding, when RTT is 450ms, in self similar burst environment, performance gain of TCP-SSC is up to 45% for ${\alpha}$=1.05. However, its is acquired only 20% performance gain for ${\alpha}$=1.95 relatively. Therefore we showed that by TCP-MTS at large time scale into a rate-based feedback congestion control, we are able to improve two times performance significantly.

  • PDF

A Study on the Conversion Time to Minimize of Transient Response during Inter-Conversion between Control Laws (제어법칙 간 상호 전환 시 과도응답 최소화를 위한 전환시간에 관한 연구)

  • Kim, Chongsup
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • The inter-conversion between different control laws in flight has a lot of risk. The SWM(Switching Mechanism) including logic and stand-by mode is designed to analyze the transient response of aircraft during inter-conversion between different control laws, based on the in-house software for non-real-time and real-time simulation. The SWM applies the fader logic of TFS(Transient Free Switch) to minimize the transient response of an aircraft during the inter-conversion, and applies the reset '0' type of the stand-by mode to prevent surface saturation due to integrator effect in the disengaged flight control law. The transition time is also important to minimize the objectionable transient response in the inter-conversion, as well as the transition control law design. This paper addresses the results of non-real-time simulation for the characteristics of transient response to different transition time to select the adequate transient time, and the real-time pilot evaluation, using SSWM(Software Switching Mechanism) and HSWM(Hardware Switching Mechanism), which is met for Level 1 flying qualities and assures safety of flight.

Closed-loop structural control with real-time smart sensors

  • Linderman, Lauren E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1147-1167
    • /
    • 2015
  • Wireless smart sensors, which have become popular for monitoring applications, are an attractive option for implementing structural control systems, due to their onboard sensing, processing, and communication capabilities. However, wireless smart sensors pose inherent challenges for control, including delays from communication, acquisition hardware, and processing time. Previous research in wireless control, which focused on semi-active systems, has found that sampling rate along with time delays can significantly impact control performance. However, because semi-active systems are guaranteed stable, these issues are typically neglected in the control design. This work achieves active control with smart sensors in an experimental setting. Because active systems are not inherently stable, all the elements of the control loop must be addressed, including data acquisition hardware, processing performance, and control design at slow sampling rates. The sensing hardware is shown to have a significant impact on the control design and performance. Ultimately, the smart sensor active control system achieves comparable performance to the traditional tethered system.

Online Learning Control for Network-induced Time Delay Systems using Reset Control and Probabilistic Prediction Method (네트워크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습제어시스템)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeul;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.929-938
    • /
    • 2009
  • This paper presents a novel control methodology for communication network based nonlinear systems with time delay nature. We construct a nominal nonlinear control law for representing a linear model and a reset control system which is aimed for corrective control strategy to compensate system error due to uncertain time delay through wireless communication network. Next, online neural control approach is proposed for overcoming nonstationary statistical nature in the network topology. Additionally, DBN (Dynamic Bayesian Network) technique is accomplished for modeling of its dynamics in terms of casuality, which is then utilized for estimating prediction of system output. We evaluate superiority and reliability of the proposed control approach through numerical simulation example in which a nonlinear inverted pendulum model is employed as a networked control system.