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ABSTRACT

This paper proposed a predictive tracking controller for the
continuous-time systems by using the receding horizon concept
in the optimal tracking control. This controller is the
continuous-time version of the previous RHTC (Receding
Horizon Tracking Control) for the discrete-time state space
models. The problems in implementing the feedforward part
of this controller is discussed and a approximate method of
implementing this controller is presented.

This approximate method utilizes the information of the
command signals on the receding horizon and has simple
constant feedback and feedforward gain. To perform the
offset free control, the integral action is included in the
continuous time RHTC. By simulation it is shown that the
proposed method gives better performance than the
conventional steady state tracking control.

1. INTRODUCTION

For regulator problems, the infinite time optimal control
has been widely used because the control law is obtained from
ARE (Algebraic Riccati Equation). But, for the tracking
problems, the infinite time optimal control is difficult to
implement unless the command signals are known for the
infinite horizon. Even if the command signals are known
priori for the infinite horizon, the feedforward part of the
optimal controller can not be computed easily.

Recently the concept of receding horizon control in the
regulator problem is developed in papers [1],{2] for the
continuous-time systems and extended v the case of the
discrete-time systems [3}.

The receding horizon concept is also applied to the tracking
problems for the discrete-time systems {4]. In [7] this receding
horizon tracking conirol law is shown to be equivalent to the
well known predictive controller 'GPC’ (Generalized
Predictive Control [7]).

In this paper the receding horizon concept will be applied
to the tracking problem for the continuous-time systems. The
obtained control law will be called the receding horizon
tracking control [RHTC] for the continuous time systems.
Unlike the infinite-time optimal tracking problem, the RHTC
requires a known command signal over the finite horizon.
Even though the finite horizon command signal is employed,
the computation of the feedfoward part of the RHTC requires
some efforts.

So this paper suggest approximate receding horizon
tracking controller which can be implemented easily. (we call
it ARHTC from now). This controller assumes that the
command signals can be approximated by the stepwise
functions. It is reasonable in most real plant process because
the only smooth component of command signals are
important.
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To guarantee zero offset in tracking of constant command
signal, integrator must be included in this controller. It is
accomplished by introducing a modified cost function and
solving the same problem for the augmented object systems.

This work is organized as follows. In Section 2, the
problems are formulated in the receding horizon concepts. In
Section 3, the control law of the continuous-time RHTC is
derived.In Section 4, approximate receding horizon tracking
control (ARHTC) is derived and its implementation and the
properties are discussed. The method of including the
integrator into the RHTC controller is discussed in Section 5.
Simulation studies are provided in Section 6. It is
demonstrated that the presented controller gives superior
performance to the conventional steady state optimal tracking
control. Finally conclusions are given in section 7.

2. PROBLEM FORMULATION

We consider a linear-time

system described by

invariant continuous-time

x(t) = Ax(1)+Bu(r)

(1
y(1) = Cx(1) )

Where x(1)eR" u{r)eR™ and y(1)eR” are the state vector,
the control vector and the output vector respectively.

At the present time t, it is assumed that the command
signal z[-] over the future horizon [t,t+T] are available.

First, the problem is obtaining the control input u[o], o €
[t,t+T] which minimize the quadratic cost:

J(.T) = %J(H T)Fe(t+T) )

1+T

1
+ Ej; [eT(U)Qe(G) + MT((I)Rll(O')]dO'

Where e(0) = z(c) — y(0)

With the assumption that T is specified, that R is positive
definite and Q,F are positive semi-definite.

In conventional optimal tracking control, u[o], ¢ € [t,t+T]
is applied to the controlled systems and at time t+ T the above
procedure is repeated over the horizon [t+T,t+ T+T’]. But
the receding horizon concept utilize the only u(t) at time t and
the control horizon [t,t+T] is moving continuously. At
arbitrary time t, u(t) is the control which minimizes the cost
over the horizon [t,t+T] and after Ar (where Ar is arbitrary
small time interval), u(t+As) minimize the cost over the
horizon [r+ Art+T+At].



3. CONTINUOUS-TIME RHTC

If t is fixed ( for cxample 1y ) in equation (2), the solution
is obtained by the conventional optimal problem as follows

[s1.

(o) = R_lBT[g((r) - K(o)x(c)]
gefrs+T]

©)

Therefore the solution u(t) which we want is given as follows.

u() = R7'BT[¢ (1) = K(n)x(1) €))

The n X n real symmetric and positive definite matrix K(t)
is obtained from the solution K(o) of the Riccati differential
equation.

K(o) = —K(o)A - ATKT(O') 5
+ K(s)BR'B'K(c) ~ CTQC
o e[t t+T]
Where f((a) = aK(o)do.
With the boundary condition
K(+T) = CTFC (6)

The vector g(t) (with n-components) is obtained from g(a),
a € [1,6+T], solution of the following linear vector differential
equation.

g(0) = -[A - BR7'B'K(0)]"g(0) — €7Qz(0) (7)
oelt+T]

With the boundary condition

g(i+7T) = CTFz(1+T) (8)

Wec note that the Riccati differential equation (5) and
boundary condition (6) are independent of the desired ouput
z(o).o € [t,t+T). This means that the gain K(o) is
completely specified, once the system, the cost (F,Q,R) and
the termianl time interval T are specified.

Especially K(t) is constant gain in the linear time invari:nt
system, that is, the receding horizon controller have a constant
feedback gain K = K(t).

Also the gain K is identical to that of the receding horizon
regulation problem from the identifiation of the Riccati
differential cquation {1]}{2]. This means that the feedback
structure of the receding horizon tracking control is the same
as that of the receding horizon ouptput regulation control
case. that is, the propertics of stability and robustness are
identical to the previous results of regulation problems.

Since in the receding horizon control the finite horizon is
assumed, the weigthing matrix F.which is essentially a design
parameter,plays a crucial role in determining the properties of
the stability in this presented control.

case 1: F=0
case 2 : F=c T
case3: { ¥ : F>0 , A'F+FA+FBR B'F+Q < 0}

For the above three different case of F,the following
several results is proved in Kwon and Pearson’s[2] and these
facts are aslo applied to continuous-time RHTC.
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Fact 1 : If {A B} is controllable and F = 0,Q > 0,R > 0, then
there exists a finite horizon T, such that the above receding
horizon tracking control law stabilizes the system.

Fact 2 : If {A,B} is controllable and F = «,Q = 0,R > 0, then
the above RHTC law stabilizes the system.

Fact 3 : If the F is belong to the case 3,then K, the solution of
the Riccati equation (5), satisfies the following inequalities

©

If K solution of (5) has lower and upper bound ,inequalities
(9) is satisfied and {A,B} is controllable, then the above
continuous time RHTC stabilizes the system.

K(T)|T=o'1 > K(T)f,=62 for r<oy=0,

The receding horizon tracking control is summarized in the
following Fig. 3.1 and equations (10),(11),(12),(13).

Controlled

z(t+T) Process

g0 + 4 U] s =As y(¥)
_»HF—>O—>RB Y 1>L—>
Feedforward
Controller % (1)

K

A

Constant
Feedback gain

Fig. 3.1 Continuous time RHTC
u(r) = R7'BT[g(r) - Kx(r)] (10)

Where K is obtained from the Riccati-differential equation
(10) off line ( K = K(7)|,—p)-

K(r) = —K(1)A — ATK(r) a1
+ K(=)BR'BK(r) — €TQC
7€ [0,T]
With K(T') = C'FC
Feedforward controller Hf is
H,:
" (=8, m0 (12)

§() = —[A — BRTB'K(™)| g(x) — CTQz(1+7) (13)
Te€[0,T]

With g(T) = CTFz(1+T) . o
Where X (7) bas been obtained from equation (11) off line in
advance.

We note that feedback part of this continuous RHTC is
easily implementable in continuous-time state space. But
feedforward controller H, is not, because it is not simple that
g(t) is obtained by solving the differential equation (13)
continuously on line at arbitrary time t and because to solve
the eq.(13), K(7)7€[0,T] should be always saved
somewhere. ] )

So although the controlled process is linear time-invariant,
feedforward part of the controller is not the form of constant
gain controller



4. APPROXIMATE RHTC (ARHTC)

In Section 3, the defects of continuous-time RHTC is
discussed. It is clear that if the feedforward controller is
easily implementable, continuous-time RHTC is very useful to
real plant because of its good performance. If the following
form of feedforward controller is developed,the above defects
can be solved easily.

g@) = (I)gg(t) + I'z(1+7T) (14)

But in this paper, approximation method of feedforward
controller is presented. This controller is approximate
continuous RHTC ( we call it ARHTC from here).

Consider arbitrary time interval T, 1sisN like the
following

0=T<Tp< -+ <T;< -+ <Ty< Ty, =T(5)

and define the function I1(v,/) as follows.

{1 if Osts!
= 1
NGx.0) 0  otherwise a6
Then we can obtain a set of functions

(o) = Mo~t1-T;T;4,~T;) 1sisN 17)

o€ ft,1+T]

Given z(o), o € [r,t+T], if only the information of z(o) at

o=t+T;,i=1,--- N are utlized, z(oc) can be
approximated as follows.
N
2(0)=3 £() (o) (18)
i=1
' o e[ta+T]

Where £(1) = z(1+7;), ie. the sampling value of
command signal in future at the instant of 7,+1.

As ,in most real cases, the only low frequency part of the
command signal is important, the appoximation of (18) is
valid only if T, ;—T; is appropriately small.

Let W (1,t,) be the state transition matrix of the differential
equation (7).
then
g(t) = ¥+ T, CTFz(1+T) (19)

++T

+ f \I’_‘(-r,t)CTQz (t)d~

From the above eq. (19) and approximation of eq. (18): th.e
output of feedforward controller in continuous-time RHTC is
given approximately.

N
gl = 3 50,0 (20)
i=1
Where
4T,
b(t) = ¥ e+T.NCTFL + f v r,nCTQdr  (21)
r+Ti
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where

1 if i=N
L,-=0

Since the functions I,(¢) in eq.(17) is not a function of t,
but 7(=0o~¢) and the state transition matrix W(,) of
€q.(7) or eq.(13) are independent of present time t, t in (21)
can be fixed to 0. So &, is given off-line and constant
parameters in ARHTC, once T i € [1,N] is specified.

Therefore ¢, is given as follows.

otherwise

T

¢ = [ ¥7@,0CTQds 22)
0
T3

b, = f ¥ 7,007 Qdr

P

T
by = f ¥ i(1,00C7Qdr + ¥UT,00CTF
Y,

Fig. 4.1 shows the structure of feedforward controller H, of

ARHTC. Also feedback structure is the same as that of
continuous-time RHTC in Section 3 or receding horizon
regulator.
$
s (T-T)| ¥
& —(© :
b,
e (T-T)| ¥ + vt
e N (o) —>
!
bn
-5 (T—-Tw) ¥ +l+ g (t)
ceemr | € OO

® :

multiplier

Fig 4.1 Feedforward Controller H; of ARHTC

The design Parameters in ARHTC are as follows.
(a) Weight matix Q,R,F in cost (2)
(b) Time interval T in cost (2)
(¢) Number of partitions N
(d) Partitions of interval [0, T} : T{,T5, - - - Ty, T

In designing the controller parameters (a), Q,R,F must be
selected to satisfy the desired degree of stabilty and robustness
primarily by classic LQ optimal control theory. It is suggested
that T is sufficiently large for feedback gain K, solution of
eq.(5) to be steady state solution{ i.e. K= 0) and that T is
not necessarily longer than the period of the command signals.

N is concerned with closeness to the continuous time
RHTC. Larger N results in better performance in tracking the
command signal. Since ¥ in (13) is usually ustablc,‘lf_1 is
stable. So it can be shown that if the T;,—7; is same for all i,
influence of z(s+T,) is larger than that of z(s+7;) for i<j.



Therfore by choosing so that T, ~7; < T~ T for i<,
more nice performance of tracking control is expected.

Tracking control in conventional optimal problem assumes
that T is infinite time and that z(t+T) in future is constant, so
the constant gain feedback controller and feedforward
controller are obtained [S]. The latter assumption is identical
to that N is fixed to 1'in proposed controller ARHTC.

The conventional optimal tracking controller is given as
follows [5:pp801 -pp&03].

u(t) = R7B,| g~ Rx(n)] (23)

Where K and ¢ are the steady state values of K and g(¢)
with the assumptions that T is infinite and z(t+T) = 2z(t) for
all T. K and ¢ is obtained from the following equations.
- AR+ KBR'B'K ~ C"QC =0

~RA (24)

g=-(GH7cQ:() (25)

Where G=A-BR'B'K

5. CONTINUOUS-TIME RHTC WITH INTEGRATOR

It has been known that the derivative of control u(r)
replacing control u(t) in the quadratic cost (2) gives integral
action to the controller. In this way Continuous-time RHTC
or ARHTC can possess integral action as well and it can be
shown that the zcro offset is guaranteed for a constant
command signal. To do this we transform the model system
(1) into the following augmented system:

%,(1) = Ax, (1) + B (1) (26)
¥(1) = C x,(1)
where x,(1).u,(r), A,, B,, and C, are defined as

(0 =[x w@) |, w,() = a(r)

A B
A =156l Ba=loBf
c, =[C 0]

where O is zero vector or matrix.
‘Then the control problem is minimizing the following cost
function with satisfying the receding concept.

30,7y = —Zl—er(t+T)Fe(t+T) @7n

1+T

1
+ ;f [eT(o)Qe(o‘) + uaT((r)Rua(cr)]du

By the same way as the above method, the optimizing
ug(1) = 1i(r) is obtained and the control input which is applied
to plant is given through the integrator from 4 ().

t

u(r) = f u (v)dr (28)

= f R_1BZ[ £.(7) K, (v)x,(1)d7

Where K, (7) and g (1) arc obtained from (11).(12) and
(13) with A,B and C replaced by A,,B, and C,
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6. SIMULATION

The objected plant is the following 2-order single-input
single-output linear time-invariant system.

. _[~1 -1) -1
=11 0 Jx+[11" 29)
y=[1 0k
The parameters in cost (2) arc
Q=4R=1,F=5T7T=50 30)
The feedforward controller is designed by
10 (31)

[

N
T, ={0,005,015,03,0.5,08, 13, 20,32, 4.8}

The gain of feedback and feedforward ARHTC controller is
obtained through numerical method with Ar = 0.002 by
computer.

1.2

Ouspst Command Signal

~

71

V
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T
&0
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o 20 Time

(a) output

a9 o

o 4 Error

|
" y
as - L\ﬂj

. VTN

a1 T T

az -

A IA

(b) error &

Time
Fig. 1 (a) output and (b) error of ARHTC with Q=4

Fig.1. (a) shows that when ARHTC is used,the output of
system is tracking the command signals from t=0 to 70 and
F}g.l (b) displays the error e()=z(t)—y(t) in the same case.
Fxg:2 (a),(b) are the results of simulation when conventional
optimal tracking controller of the equation (23),(24),(25).



Command signal
Output

—Q2 - |

\

-0é&

-0z -

-1 T T T T T T
] 20 40 &0
(a) output

Time

Error

o ' 20 ' o ' w0
(b) error

Time

Fig. 2 (a) output and (b) error of conventional controller
with Q=4

To compare the performance, let’s introducce the following
performance criteria.

70

Jjo = f [eT()Qe(r) + u"(Ru(t)]dr (32)
1]

The above criteria (32) include the accumulated error
between desired coramand signals and the output of system
and control costs over the simulation interval. Also it reflects
Q and R of the design cost function (2).

The comparizion of performance for the both controllers in
Fig.1 and Fig.2 is as follows

15.6748
18.4011

ARHTC J
Standrad Controller J

From these data, it is clear that approximate RHTC controller
gives better performance than the conventional optimal
tracking controller of €q.(23), (24),(25) in the viewpoint of
minimizing the criteria of eq. (32). Also from the Fig.1 (b)
and Fig.2 (b),it can be known that when ARHTC is used, the
closed loop system has small error at the abrupt transition of
command signal,
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7. CONCLUSION

Recently RHTC for the discrete-time state space is
introduced and is known to be uscful in real plant. In this
paper a predictive controller,continuous-time RHTC, is
proposed which is the continuous-time version of the previous
RHTC [4] by introducing the receding horizon concept into
the optimal tracking control problem. The properties of
stability of this controller is discussed by the results of the
receding horizon regulation problem.

Since the continuous time RHTC controller has a little
complex feedforward part,a approximate continuous-time
controller is proposed in this paper. Unlike the original
continuous time RHTC,its fecdforward control signal can be
computed with constant gains, so its implementation is simplc
The method of obtaining the zero offsct in tracking constant
command.

By computer simulation,it is shown that the proposcd
controller gives better performance, especially at the time of
abrupt transition of the command signal. It is probably due to
the propertics of the predictive control laws.

In continuous time state space, many results of stabilty and
robustness of feedback control is available, especially in the
area of optimal LQ control. The RHTC will share the good
propertics of the optimal LQ regulator problem since they are
similar in nature.

More studies are demanded in developing more nice
feedforward controller, or RHTC controller for the output
feedback form. Also results of the application of continuous
time RHTC to real process will be necessary.
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