• Title/Summary/Keyword: Time and frequency synchronization

Search Result 180, Processing Time 0.028 seconds

Fast Carrier Frequency Synchronization for CMMB Robust to Time Offset and Fading (시간 오프셋 및 페이딩 환경에 강인한 CMMB 고속 주파수 동기 알고리듬)

  • Kang, Eun-Su;Han, Dong-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.516-522
    • /
    • 2010
  • In this paper, the carrier frequency offset estimator is proposed for the China multimedia mobile broadcasting (CMMB). The fractional carrier frequency offset is estimated by utilizing the cyclic prefix in each CMMB symbol. In addition, the integer carrier frequency offset can be estimated with the synchronization signal in every CMMB frame. The proposed estimator is the most suitable for the frame structure of CMMB. It shows a prominent performance even in timing offset and multipath conditions.

Performance Analysis of Fine Frequency Synchronization Scheme in Mobile WiMAX Systems (Mobile WiMAX 시스템에서 미세 주파수 동기화 기법의 성능 분석)

  • Yang, Hyun;Jeong, Kwang-Soo;Lee, Kyeong-Il;Yi, Jae-Hoon;You, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.815-820
    • /
    • 2008
  • Carrier frequency offset (CFO) is one of the most important problems in an orthogonal frequency division multiplexing (OFDM) system, which seriously degrades the performance of the systems due to its time-variant behavior. In this paper, the performance of a pilot-assisted fine CFO estimator in OFDM-based mobile WiMAX systems is analyzed. Analytical closed-form expression of the mean square error (MSE) of the post-FFT based CFO synchronization scheme is reported for time-variant fading channels. Taking into account the frame structure of the IEEE802.16e standard, simulation results are used to verify the theoretical analysis developed in this paper.

Algorithm for the Improvement of Time and Frequency Synchronization Performance in OFDMA System (OFDMA 시스템의 시간 및 주파수 동기 성능 향상을 위한 동기화 알고리즘)

  • Noh Jung-Ho;Sun Tae-Hyoung;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4A
    • /
    • pp.402-411
    • /
    • 2006
  • In OFDMA system, multiple users transmit signal through the subcarriers assigned to the user. Capabilities of high data-rate transmission in OFDMA system come from the ability to compensate the ICI (Inter Carrier Interference) using a single-tap equalizer and to implement transmitter and receiver by employing high speed FFT circuitry. Issues of time and frequency synchronization in OFDM system is quite essential to preserve the orthogonality among subcarriers not to produce ICI. In this paper, we Int analyze the preamble used in 802.16 d/e and WiBro system. Then we propose an effective timing synchronization algorithm, which is more accurate than the conventional one in the sense of timing position, and integral frequency offset estimation scheme for the simultaneouse estimation of the fractional and integral frequency offset. Through the simulation utilizing the proposed synchronization algorithm and structure, we show that the performance degradation due to the adjacent channel interference can be mitigated for the than conventional ones.

Performance Analysis of an Efficient Frame Synchronization Scheme using FFT Window Position Restoration Algorithm for OFDM Systems (OFDM System에서 FFT 윈도우 위치 복원 알고리즘을 이용한 효율적인 프레임 동기방식의 성능분석)

  • Kim, Dong Ok;Yoon, Chong Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.45-53
    • /
    • 2001
  • We present the frame synchronization scheme using the FFT window position restoration algorithm appropriate for wireless OFDM systems under multipath fading environment. From the restoration of the synchronization parameters of previous several frames, the algorithm can extract the synchronization parameters for the next frames. To analyze the performance of the proposed algorithm, we compare the probability of synchronization failure under time and frequency domains, respectively. From the simulation results, one can see that the algorithm in the time domain shows better performance than in the frequency one, for the $E_b/N_o$ of 6.0dB or more.

  • PDF

VLSI Implementation of Auto-Correlation Architecture for Synchronization of MIMO-OFDM WLAN Systems

  • Cho, Jong-Min;Kim, Jin-Sang;Cho, Won-Kyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.185-192
    • /
    • 2010
  • This paper presents a hardware-efficient auto-correlation scheme for the synchronization of MIMO-OFDM based wireless local area network (WLAN) systems, such as IEEE 802.11n. Carrier frequency offset (CFO) estimation for the frequency synchronization requires high complexity auto-correlation operations of many training symbols. In order to reduce the hardware complexity of the MIMO-OFDM synchronization, we propose an efficient correlation scheme based on time-multiplexing technique and the use of reduced samples while preserving the performance. Compared to a conventional architecture, the proposed architecture requires only 27% logic gates and 22% power consumption with acceptable BER performance loss.

A Distributed Frequency Synchronization Technique for OFDMA-Based Mesh Networks Using Bio-Inspired Algorithm (Bio-inspired 알고리즘을 이용한 OFDMA 기반 메쉬 네트워크의 분산 주파수 동기화 기법)

  • Yoo, Hyun-Jong;Lee, Mi-Na;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1022-1032
    • /
    • 2012
  • In OFDMA-based wireless mesh networks, synchronization of carrier frequencies among adjacent nodes is known to be difficult. In this paper, a distributed synchronization technique is proposed to solve the synchronization problem in OFDMA-based wireless mesh networks by using the bio-inspired algorithm. In the proposed approach, carrier frequencies of all nodes in a mesh network are converged into one frequency by locally synchronizing the frequencies of adjacent nodes. It may take a long time to be converged in some topologies since the convergence characteristic of carrier frequencies in a mesh network may vary depending on the size of the network and deployment of nodes. It is shown that fast frequency synchronization, not heavily depending on the topology, can be achieved through the proposed algorithm with an adjustable weight.

A Realization of the Synchronization Module between the Up-Link and the Down-Link for the WiBro System (WiBro 시스템에서 상향링크와 하향링크 간 시간 동기 장치 구현)

  • Park Hyong-Rock;Kim Jae-Hyung;Hong Een-Kee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • In this paper, we propose the time synchronization module on fiber optic repeater to use optic line delay for obtaining time synchronization between up-link and down-link, in the 2.3 GHz WiBro network using TDD/OFDM (Time Division Duplex/Orthogonal Frequency Division Multiplexing) Generally, when we use fiber optic repeater to remove the shade area, it occurs transmission delay which is caused by optic transmission between RAS (Radio Access Station) and fiber optic repeater and inner delay of fiber optic repeater. Because the WiBro system is adopting a TOO method and there exists the difference of switching time which is caused by these delay between up-link and down-link, it occurs ISI (Inter Symbol Interference), ICI (Inter Carrier Interference). These interference results in the reduction of the coverage. And the inconsistency between Up-Link and Down-Link switching time maybe gives rise to the interruption of communication. In order to prevent these cases, we propose synchronization module using analog optic line delay as the one of synchronizing up-link and down-link. And we propose the consideration factor for the designing time synchronization module and the feature of optic line of analog method. The measurement result of optic line time synchronization module of structure proposed is as follows, the delay error of $0.5{\mu}g$ and the insertion loss value below maximum 4.5dB in range of $0{\sim}40{\mu}s$. These results fully meet the specification of WiBro System.

  • PDF

Spatial - Frequency Analysis of time-varying Coherence using ERP signals for attentional visual stimulus (시각 자극의 집중에 따른 시간 변화에 대한 뇌 유발전위의 공간 - 주파수간 상관 변화 분석)

  • Lee, ByuckJin;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.16 no.4
    • /
    • pp.527-534
    • /
    • 2013
  • In this study, we analyzed spatial-frequency relationship related brain function for change of the time during attentional visual stimulus through the analysis of Coherence. With experimentation about ERP(Event Related Potential)data, it revealed that change of the phase synchronization between different scalp locations at ${\theta}$, ${\alpha}$ band. ERP between left and right frontal lobes, between the frontal and central lobes showed the phase synchronization at the P100, N200, ERP between the frontal and occipital lobes showed the phase synchronization at the P300 related information of visual stimulus. Compared to STFT using the window of a fixed length, CWT is able to multi-resolution analysis with the adjustment of parameters of mother wavelet. Thus, coherence results with CWT was found to be effective for analysis of time-varying spatial-frequency relationship in ERP. The phase synchronization for inattentional visual stimulus was not observed.

High-Performance Synchronization for Circuit Emulation in an Ethernet MAN

  • Hadzic Ilija;Szurkowski Edward S.
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • Ethernet is being deployed in metropolitan area networks (MANs) as a lower-cost alternative to SONET-based infrastructures. MANs are usually required to support common communication services, such as voice and frame relay, based on legacy synchronous TDM technology in addition to asynchronous packet data transport. This paper addresses the clock synchronization problem that arises when transporting synchronous services over an asynchronous packet infrastructure, such as Ethernet. A novel algorithm for clock synchronization is presented combining time-stamp methods used in the network time protocol (NTP) with signal processing techniques applied to measured packet interarrival times. The algorithm achieves the frequency accuracy, stability, low drift, holdover performance, and rapid convergence required for viable emulation of TDM circuit services over Ethernet.

Effect of Synchronization Errors with Distributed Beamforming in OFDM Systems (분산 빔포밍을 이용한 OFDM 시스템에서의 동기에러 영향 분석)

  • Kim, Haesoo;Lee, Kwangho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.3-10
    • /
    • 2014
  • Three synchronization issues, i.e., symbol time, phase, and frequency, have to be properly controlled to achieve distributed beamforming gain. In this paper, the impacts of synchronization errors in distributed beamforming are analyzed for OFDM systems. For symbol timing error of cooperating signals, high frequency subcarriers are more susceptible as compared to low frequency ones. The desired signal loss due to phase and frequency offset is independent of subcarrier number. However, frequency offset is critical in OFDM systems since it leads to interference from the other subcarriers as well as power loss in the desired signal. Performance degradation due to three synchronization errors is shown with various numbers of cooperating signals and offset values. It shows that the performance analysis is well matched with simulation results.