• Title/Summary/Keyword: Time and Motion Studies

Search Result 349, Processing Time 0.024 seconds

Proximal Interphalangeal Joint Dislocations and Treatment: An Evolutionary Process

  • Joyce, Kenneth Michael;Joyce, Cormac Weekes;Conroy, Frank;Chan, Jeff;Buckley, Emily;Carroll, Sean Michael
    • Archives of Plastic Surgery
    • /
    • v.41 no.4
    • /
    • pp.394-397
    • /
    • 2014
  • Background Proximal interphalangeal joint (PIPJ) dislocations represent a significant proportion of hand clinic visits and typically require frequent follow-ups for clinical assessment, orthotic adjustments, and physiotherapy. There are a large number of treatment options available for PIPJ dislocations, yet no prospective or controlled studies have been carried out, largely due to the diversity of the various types of injuries. Methods We retrospectively reviewed all the PIPJ dislocations in our institution over a five-year period and directly compared the different splinting techniques that we have used over this time frame. Results There were a total of 77 dislocations of the PIPJ (57 men and 20 women) that were included in our study. We found that our management has shifted gradually from complete immobilisation to controlled early mobilisation with figure-of-eight splints. Following treatment, the range of motion of the PIPJ in the figure-of-eight group was significantly greater than that in the other three methods (P<0.05) used. There were significantly fewer hospital visits in the figure-of-eight splint group than in the other treatment groups. Conclusions The treatment of PIPJ dislocations has undergone a significant evolution in our experience. Early controlled mobilisation has become increasingly important, and therefore, splints have had to be adapted to allow for this. The figure-of-eight splint has yielded excellent results in our experience. It should be considered for all PIPJ dislocations, but careful patient selection is required to achieve optimum results.

TRACKING LIFT-PATHS OF A ROBOTIC TOWERCRANE WITH ENCODER SENSORS

  • Suyeul Park;Ghang, Lee;Joonbeom cho;Sungil Hham;Ahram Han;Taekwan Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.250-256
    • /
    • 2009
  • This paper presents a robotic tower-crane system using encoder and gyroscope sensors as path tracking devices. Tower crane work is often associated with falling accidents and industrial disasters. Such problems often incur a loss of time and money for the contractor. For this reason, many studies have been done on an automatic tower crane. As a part of 5-year 23-million-dollar research project in Korea, we are developing a robotic tower crane which aims to improve the safety level and productivity. We selected a luffing tower crane, which is commonly used in urban construction projects today, as a platform for the robotic tower crane system. This system comprises two modules: the automated path planning module and the path tracking module. The automated path planning system uses the 3D Cartesian coordinates. When the robotic tower crane lifts construction material, the algorithm creates a line, which represents a lifting path, in virtual space. This algorithm seeks and generates the best route to lift construction material while avoiding known obstacles from real construction site. The path tracking system detects the location of a lifted material in terms of the 3D coordinate values using various types of sensors including adopts encoder and gyroscope sensors. We are testing various sensors as a candidate for the path tracking device. This specific study focuses on how to employ encoder and gyroscope sensors in the robotic crane These sensors measure a movement and rotary motion of the robotic tower crane. Finally, the movement of the robotic tower crane is displayed in a virtual space that synthesizes the data from two modules: the automatically planned path and the tracked paths. We are currently field-testing the feasibility of the proposed system using an actual tower crane. In the next step, the robotic tower crane will be applied to actual construction sites with a following analysis of the crane's productivity in order to ascertain its economic efficiency.

  • PDF

Solution and Estimate to the Angular Velocity of INS Formed only by Linear Accelerometers

  • Junwei, Wu;Jinfeng, Liu;Yunan, Zhang;Na, Yuan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.103-107
    • /
    • 2006
  • At present, most efforts tend to develop a INS which is only based linear accelerometers, because of the low cost micro-machining gyroscopes lack of the accuracy needed for precise navigation application and possible achieving the required levels of precise for micro-machining accelerometer. Although it was known in theory that a minimum of six accelerometers are required for a complete description of a rigid body motion, and any configuration of six accelerometers (except for a "measure zero " set of six-accelerometer schemes) will work. Studies on the feasible configuration of GF-INS indicate that the errors of angular velocity resolved from the six accelerometers scheme are diverged with time or have multi solutions. The angular velocity errors are induced by the biases together with the position vectors of the accelerometers, therefore, in order to treat with the problem just mentioned, researchers have been doing many efforts, such as the extra three accelerometers or the magnetometers may be taken as the reference information, the extended Kalman filter (EKF) involved to make the angular velocity errors bound and be estimated, and so on. In this paper, the typical configurations of GF-INS are introduced; for each type GF-INS described, the solutions to the angular velocity and the specific force are derived and the characteristic is indicated; one of the corresponding extend Kalman filters are introduced to estimate the angular errors; parts of the simulation results are presented to verify the validity of the equations of angular velocity and specific force and the performance of extend Kalman filter.

  • PDF

Underwater Navigation of AUVs Using Uncorrelated Measurement Error Model of USBL

  • Lee, Pan-Mook;Park, Jin-Yeong;Baek, Hyuk;Kim, Sea-Moon;Jun, Bong-Huan;Kim, Ho-Sung;Lee, Phil-Yeob
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.340-352
    • /
    • 2022
  • This article presents a modeling method for the uncorrelated measurement error of the ultra-short baseline (USBL) acoustic positioning system for aiding navigation of underwater vehicles. The Mahalanobis distance (MD) and principal component analysis are applied to decorrelate the errors of USBL measurements, which are correlated in the x- and y-directions and vary according to the relative direction and distance between a reference station and the underwater vehicles. The proposed method can decouple the radial-direction error and angular direction error from each USBL measurement, where the former and latter are independent and dependent, respectively, of the distance between the reference station and the vehicle. With the decorrelation of the USBL errors along the trajectory of the vehicles in every time step, the proposed method can reduce the threshold of the outlier decision level. To demonstrate the effectiveness of the proposed method, simulation studies were performed with motion data obtained from a field experiment involving an autonomous underwater vehicle and USBL signals generated numerically by matching the specifications of a specific USBL with the data of a global positioning system. The simulations indicated that the navigation system is more robust in rejecting outliers of the USBL measurements than conventional ones. In addition, it was shown that the erroneous estimation of the navigation system after a long USBL blackout can converge to the true states using the MD of the USBL measurements. The navigation systems using the uncorrelated error model of the USBL, therefore, can effectively eliminate USBL outliers without loss of uncontaminated signals.

The Change of Sagittal Alignment of the Lumbar Spine after Dynesys Stabilization and Proposal of a Refinement

  • Park, Won Man;Kim, Chi Heon;Kim, Yoon Hyuk;Chung, Chun Kee;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • Objective : $Dynesys^{(R)}$ is one of the pedicle-based dynamic lumbar stabilization systems and good clinical outcome has been reported. However, the cylindrical spacer between the heads of the screws undergoes deformation during assembly of the system. The pre-strain probably change the angle of instrumented spine with time and oblique-shaped spacer may reduce the pre-strain. We analyzed patients with single-level stabilization with $Dynesys^{(R)}$ and simulated oblique-shaped spacer with finite element (FE) model analysis. Methods : Consecutive 14 patients, who underwent surgery for single-level lumbar spinal stenosis and were followed-up more than 24 months (M : F=6 : 8; age, $58.7{\pm}8.0$ years), were analyzed. Lumbar lordosis and segmental angle at the index level were compared between preoperation and postoperative month 24. The von Mises stresses on the obliquely-cut spacer ($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$, $25^{\circ}$, and $30^{\circ}$) were calculated under the compressive force of 400 N and 10 Nm of moment with validated FE model of the L4-5 spinal motion segment with segmental angle of $16^{\circ}$. Results : Lumbar lordosis was not changed, while segmental angle was changed significantly from $-8.1{\pm}7.2^{\circ}$ to $-5.9{\pm}6.7^{\circ}$ (p<0.01) at postoperative month 24. The maximum von Mises stresses were markedly decreased with increased angle of the spacer up to $20^{\circ}$. The stress on the spacer was uneven with cylindrical spacer but it became even with the $15^{\circ}$ oblique spacer. Conclusion : The decreased segmental lordosis may be partially related to the pre-strain of Dynesys. Further clinical and biomechanical studies are required for relevant use of the system.

System identification of soil behavior from vertical seismic arrays

  • Glaser, Steven D.;Ni, Sheng-Huoo;Ko, Chi-Chih
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.727-740
    • /
    • 2008
  • A down hole vertical seismic array is a sequence of instruments installed at various depths in the earth to record the ground motion at multiple points during an earthquake. Numerous studies demonstrate the unique utility of vertical seismic arrays for studying in situ site response and soil behavior. Examples are given of analyses made at two sites to show the value of data from vertical seismic arrays. The sites examined are the Lotung, Taiwan SMART1 array and a new site installed at Jingliao, Taiwan. Details of the installation of the Jingliao array are given. ARX models are theoretically the correct process models for vertical wave propagation in the layered earth, and are used to linearly map deeper sensor input signals to shallower sensor output signals. An example of Event 16 at the Lotung array is given. This same data, when examined in detail with a Bayesian inference model, can also be explained by nonlinear filters yielding commonly accepted soil degradation curves. Results from applying an ARMAX model to data from the Jingliao vertical seismic array are presented. Estimates of inter-transducer soil increment resonant frequency, shear modulus, and damping ratio are presented. The shear modulus varied from 50 to 150 MPa, and damping ratio between 8% and 15%. A new hardware monitoring system - TerraScope - is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. An internal 16-bit micro-controller oversees all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage.

Structural response of historical masonry arch bridges under different arch curvature considering soil-structure interaction

  • Altunisik, Ahmet Can;Kanbur, Burcu;Genc, Ali Fuat;Kalkan, Ebru
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • In this paper, it is aimed to present a detail investigation about the comparison of static and dynamic behavior of historical masonry arch bridges considering different arch curvature. $G{\ddot{o}}derni$ historical masonry two-span arch bridge which is located in Kulp town, Diyarbakir, Turkey is selected as a numerical application. The bridge takes part in bowless bridge group and built in large measures than the others. The restoration projects were approved and rehabilitation studies have still continued. Finite element model of the bridge is constituted with special software to determine the static and dynamic behavior. To demonstrate the arch curvature effect, the finite element model are reconstructed considering different arch curvature between 2.86 m-3.76 m for first arch and 2.64 m-3.54 m for second arch with the increment of 0.10 m, respectively. Dead and live vehicle loads are taken into account during static analyses. 1999 Kocaeli earthquake ground motion record is considered for time history analyses. The maximum displacements, principal stresses and elastic strains are compared with each other using contour diagrams. It is seen that the arch curvature has more influence on the structural response of historical masonry arch bridges. At the end of the study, it is seen that with the increasing of the arch heights, the maximum displacements, minimum principal stresses and minimum elastic strains have a decreasing trend in all analyses, in addition maximum principal stresses and maximum elastic strains have unchanging trend up to optimum geometry.

Verification of X-sight Lung Tracking System in the CyberKnife (사이버나이프에서 폐종양 추적 시스템의 정확도 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Ki;Cho, Kwang-Hwan;Lee, Sang-Hoon;Choi, Jin-Ho;Lim, Sang-Wook;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

  • PDF

Ductility and ductility reduction factor for MDOF systems

  • Reyes-Salazar, Alfredo
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.369-385
    • /
    • 2002
  • Ductility capacity is comprehensively studied for steel moment-resisting frames. Local, story and global ductility are being considered. An appropriate measure of global ductility is suggested. A time domain nonlinear seismic response algorithm is used to evaluate several definitions of ductility. It is observed that for one-story structures, resembling a single degree of freedom (SDOF) system, all definitions of global ductility seem to give reasonable values. However, for complex structures it may give unreasonable values. It indicates that using SDOF systems to estimate the ductility capacity may be a very crude approximation. For multi degree of freedom (MDOF) systems some definitions may not be appropriate, even though they are used in the profession. Results also indicate that the structural global ductility of 4, commonly used for moment-resisting steel frames, cannot be justified based on this study. The ductility of MDOF structural systems and the corresponding equivalent SDOF systems is studied. The global ductility values are very different for the two representations. The ductility reduction factor $F_{\mu}$ is also estimated. For a given frame, the values of the $F_{\mu}$ parameter significantly vary from one earthquake to another, even though the maximum deformation in terms of the interstory displacement is roughly the same for all earthquakes. This is because the $F_{\mu}$ values depend on the amount of dissipated energy, which in turn depends on the plastic mechanism, formed in the frames as well as on the loading, unloading and reloading process at plastic hinges. Based on the results of this study, the Newmark and Hall procedure to relate the ductility reduction factor and the ductility parameter cannot be justified. The reason for this is that SDOF systems were used to model real frames in these studies. Higher mode effects were neglected and energy dissipation was not explicitly considered. In addition, it is not possible to observe the formation of a collapse mechanism in the equivalent SDOF systems. Therefore, the ductility parameter and the force reduction factor should be estimated by using the MDOF representation.

Quantitative Analysis of Single Bacterial Chemotaxis Using a Hydrodynamic Focusing Channel (유체역학적 집속 효과를 이용한 단일 박테리아 주화성의 정량적 분석)

  • Jeon, Ho-Jeong;Lee, Yong-Ku;Jin, Song-Wan;Koo, Sang-Mo;Lee, Chang-Soo;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.209-216
    • /
    • 2007
  • Bacterial chemotaxis is essential to the study of structure and function of bacteria. Although many studies have accumulated the knowledge about chemotaxis in the past, the motion of a single bacterium has not been studied much yet. In this study, we have developed a device microfabricated by soft lithography and consisting of microfluidic channels. The microfluidic assay generates a concentration gradient of chemoattractant linearly in the main channel by only diffusion of the chemicals. Bacteria are injected into the main channel in a single row by hydrodynamic focusing technique. We measured the velocity of bacteria in response to a given concentration gradient of chemoattractant using the microfludic assay, optical systems with CCD camera and simple PTV (Particle Tracking Velocimetry) algorithm. The advantage of this assay and experiment is to measure the velocity of a single bacterium and to quantify the degree of chemotaxis by statistically analyzing the velocity at the same time. Specifically, we measured and analyzed the motility of Escherichia coli strain RP437 in response to various concentration gradients of L-aspartate statistically and quantitatively by using this microfluidic assay. We obtained the probability density of the velocity while RP437 cells are swimming and tumbling in the presence of the linear concentration gradient of L-aspartate, and quantified the degree of chemotaxis by analyzing the probability density.