• Title/Summary/Keyword: Time Weighted Algorithm

Search Result 312, Processing Time 0.021 seconds

A Low Power-Driven Data Path Optimization based on Minimizing Switching Activity (스위칭 동작 최소화를 통한 저전력 데이터 경로 최적화)

  • 임세진;조준동
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.4
    • /
    • pp.17-29
    • /
    • 1999
  • This paper presents a high level synthesis method targeting low power consumption for data-dominated CMOS circuits (e.g., DSP). The high level synthesis is divided into three basic tasks: scheduling, resource and register allocation. For lower power scheduling, we increase the possibility of reusing an input operand of functional units. For a scheduled data flow graph, a compatibility graph for register and resource allocation is formed, and then a special weighted network is then constructed from the compatibility graph and the minimum cost flow algorithm is performed on the network to obtain the minimum power consumption data path assignment. The formulated problem is then solved optimally in polynomial time. This method reduces both the switching activity and the capacitance in synthesized data path. Experimental results show 15% power reduction in benchmark circuits.

  • PDF

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Empirical Analysis of a Fine-Tuned Deep Convolutional Model in Classifying and Detecting Malaria Parasites from Blood Smears

  • Montalbo, Francis Jesmar P.;Alon, Alvin S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.147-165
    • /
    • 2021
  • In this work, we empirically evaluated the efficiency of the recent EfficientNetB0 model to identify and diagnose malaria parasite infections in blood smears. The dataset used was collected and classified by relevant experts from the Lister Hill National Centre for Biomedical Communications (LHNCBC). We prepared our samples with minimal image transformations as opposed to others, as we focused more on the feature extraction capability of the EfficientNetB0 baseline model. We applied transfer learning to increase the initial feature sets and reduced the training time to train our model. We then fine-tuned it to work with our proposed layers and re-trained the entire model to learn from our prepared dataset. The highest overall accuracy attained from our evaluated results was 94.70% from fifty epochs and followed by 94.68% within just ten. Additional visualization and analysis using the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm visualized how effectively our fine-tuned EfficientNetB0 detected infections better than other recent state-of-the-art DCNN models. This study, therefore, concludes that when fine-tuned, the recent EfficientNetB0 will generate highly accurate deep learning solutions for the identification of malaria parasites in blood smears without the need for stringent pre-processing, optimization, or data augmentation of images.

An Optimal Intermodal-Transport Algorithm using Dynamic Programming (동적 프로그래밍을 이용한 최적복합운송 알고리즘)

  • Cho Jae-Hyung;Kim Hyun-Soo;Choi Hyung-Rim;Park Nam-Kyu;Kim So-Yeon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.95-108
    • /
    • 2006
  • Because of rapid expansion of third party logistics, fierce competition in the transportation industry, and the diversification and globalization of transportation channels, an effective transportation planning by means of multimodal transport is badly needed. Accordingly, this study aims to suggest an optimal transport algorithm for the multimodal transport in the international logistics. Cargoes and stopovers can be changed numerously according to the change of transportation modes, thus being a NP-hard problem. As a solution for this problem, first of all, we have applied a pruning algorithm to simplify it, suggesting a heuristic algorithm for constrained shortest path problem to find out a feasible area with an effective time range and effective cost range, which has been applied to the Label Setting Algorithm, consequently leading to multiple Pareto optimal solutions. Also, in order to test the efficiency of the algorithm for constrained shortest path problem, this paper has applied it to the actual transportation path from Busan port of Korea to Rotterdam port of Netherlands.

  • PDF

Improvement of LMS Algorithm Convergence Speed with Updating Adaptive Weight in Data-Recycling Scheme (데이터-재순환 구조에서 적응 가중치 갱신을 통한 LMS 알고리즘 수렴 속 도 개선)

  • Kim, Gwang-Jun;Jang, Hyok;Suk, Kyung-Hyu;Na, Sang-Dong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.4
    • /
    • pp.11-22
    • /
    • 1999
  • Least-mean-square(LMS) adaptive filters have proven to be extremely useful in a number of signal processing tasks. However LMS adaptive filter suffer from a slow rate of convergence for a given steady-state mean square error as compared to the behavior of recursive least squares adaptive filter. In this paper an efficient signal interference control technique is introduced to improve the convergence speed of LMS algorithm with tap weighted vectors updating which were controled by reusing data which was abandoned data in the Adaptive transversal filter in the scheme with data recycling buffers. The computer simulation show that the character of convergence and the value of MSE of proposed algorithm are faster and lower than the existing LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having the same condition of LMS algorithm.

An Image Merging Method for Two High Dynamic Range Images of Different Exposure (노출 시간이 다른 두 HDR 영상의 융합 기법)

  • Kim, Jin-Heon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.526-534
    • /
    • 2010
  • This paper describes an algorithm which merges two HDR pictures taken under different exposure time to display on the LDR devices such as LCD or CRT. The proposed method does not generate the radiance map, but directly merges using the weights computed from the input images. The weights are firstly produced on the pixel basis, and then blended with a Gaussian function. This process prevents some possible sparkle noises caused by radical change of the weights and contributes to smooth connection between 2 image informations. The chrominance informations of the images are merged on the weighted averaging scheme using the deviations of RGB average and their differences. The algorithm is characterized by the feature that it represents well the unsaturated area of 2 original images and the connection of the image information is smooth. The proposed method uses only 2 input images and automatically tunes the whole internal process according to them, thus autonomous operation is possible when it is included in HDR cameras which use double shuttering scheme or double sensor cells.

Development of Land fog Detection Algorithm based on the Optical and Textural Properties of Fog using COMS Data

  • Suh, Myoung-Seok;Lee, Seung-Ju;Kim, So-Hyeong;Han, Ji-Hye;Seo, Eun-Kyoung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • We developed fog detection algorithm (KNU_FDA) based on the optical and textural properties of fog using satellite (COMS) and ground observation data. The optical properties are dual channel difference (DCD: BT3.7 - BT11) and albedo, and the textural properties are normalized local standard deviation of IR1 and visible channels. Temperature difference between air temperature and BT11 is applied to discriminate the fog from other clouds. Fog detection is performed according to the solar zenith angle of pixel because of the different availability of satellite data: day, night and dawn/dusk. Post-processing is also performed to increase the probability of detection (POD), in particular, at the edge of main fog area. The fog probability is calculated by the weighted sum of threshold tests. The initial threshold and weighting values are optimized using sensitivity tests for the varying threshold values using receiver operating characteristic analysis. The validation results with ground visibility data for the validation cases showed that the performance of KNU_FDA show relatively consistent detection skills but it clearly depends on the fog types and time of day. The average POD and FAR (False Alarm Ratio) for the training and validation cases are ranged from 0.76 to 0.90 and from 0.41 to 0.63, respectively. In general, the performance is relatively good for the fog without high cloud and strong fog but that is significantly decreased for the weak fog. In order to improve the detection skills and stability, optimization of threshold and weighting values are needed through the various training cases.

Design of Optimal FIR Filters for Data Transmission (데이터 전송을 위한 최적 FIR 필터 설계)

  • 이상욱;이용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1226-1237
    • /
    • 1993
  • For data transmission over strictly band-limited non-ideal channels, different types of filters with arbitrary responses are needed. In this paper. we proposed two efficient techniques for the design of such FIR filters whose response is specified in either the time or the frequency domain. In particular when a fractionally-spaced structure is used for the transceiver, these filters can be efficiently designed by making use of characteristics of oversampling. By using a minimum mean-squared error criterion, we design a fractionally-spaced FIR filter whose frequency response can be controlled without affecting the output error. With proper specification of the shape of the additive noise signals, for example, the design results in a receiver filter that can perform compromise equalization as well as phase splitting filtering for QAM demodulation. The second method ad-dresses the design of an FIR filter whose desired response can be arbitrarily specified in the frequency domain. For optimum design, we use an iterative optimization technique based on a weighted least mean square algorithm. A new adaptation algorithm for updating the weighting function is proposed for fast and stable convergence. It is shown that these two independent methods can be efficiently combined together for more complex applications.

  • PDF

Face Relation Feature for Separating Overlapped Objects in a 2D Image (2차원영상에서 가려진 물체를 분리하기 위한 면관계 특징)

  • Piljae Song;Park, Hongjoo;Hyungtai Cha;Hernsoo Hahn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.54-68
    • /
    • 2001
  • This paper proposes a new algorithm that detects and separates the occluding and occluded objects in a 2D image. An input image is represented by the attributed graph where a node corresponds to a surface and an arc connecting two nodes describes the adjacency of the nodes in the image. Each end of arc is weighted by relation value which tells the number of edges connected to the surface represented by the node in the opposite side of the arc. In attributed graph, homogeneous nodes pertained to a same object always construct one of three special patterns which can be simply classified by comparison of relation values of the arcs. The experimental results have shown that the proposed algorithm efficiently separates the objects overlapped arbitrarily, and that this approach of separating objects before matching operation reduces the matching time significantly by simplifying the matching problem of overlapped objects as the one of individual single object.

  • PDF

Object Tracking Using Particle Filters in Moving Camera (움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적)

  • Ko, Byoung-Chul;Nam, Jae-Yeal;Kwak, Joon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.375-387
    • /
    • 2012
  • This paper proposes a new real-time object tracking algorithm using particle filters with color and texture features in moving CCD camera images. If the user selects an initial object, this region is declared as a target particle and an initial state is modeled. Then, N particles are generated based on random distribution and CS-LBP (Centre Symmetric Local Binary Patterns) for texture model and weighted color distribution is modeled from each particle. For observation likelihoods estimation, Bhattacharyya distance between particles and their feature models are calculated and this observation likelihoods are used for weights of individual particles. After weights estimation, a new particle which has the maximum weight is selected and new particles are re-sampled using the maximum particle. For performance comparison, we tested a few combinations of features and particle filters. The proposed algorithm showed best object tracking performance when we used color and texture model simultaneously for likelihood estimation.