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Abstract 
 

In this work, we empirically evaluated the efficiency of the recent EfficientNetB0 model to 

identify and diagnose malaria parasite infections in blood smears. The dataset used was 

collected and classified by relevant experts from the Lister Hill National Centre for Biomedical 

Communications (LHNCBC). We prepared our samples with minimal image transformations 

as opposed to others, as we focused more on the feature extraction capability of the 

EfficientNetB0 baseline model. We applied transfer learning to increase the initial feature sets 

and reduced the training time to train our model. We then fine-tuned it to work with our 

proposed layers and re-trained the entire model to learn from our prepared dataset. The highest 

overall accuracy attained from our evaluated results was 94.70% from fifty epochs and 

followed by 94.68% within just ten. Additional visualization and analysis using the Gradient-

weighted Class Activation Mapping (Grad-CAM) algorithm visualized how effectively our 

fine-tuned EfficientNetB0 detected infections better than other recent state-of-the-art DCNN 

models. This study, therefore, concludes that when fine-tuned, the recent EfficientNetB0 will 

generate highly accurate deep learning solutions for the identification of malaria parasites in 

blood smears without the need for stringent pre-processing, optimization, or data augmentation 

of images. 
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1. Introduction 

Malaria had been a devastating threat to human lives for the past decades and infecting about 

228 million people worldwide. According to the 2018 report of the World Health Organization 

(WHO), malaria had claimed 405,000 lives worldwide, with 67% of the total recorded deaths 

from children ages below five [1]. The infection occurs when an Anopheles mosquito transfers 

various plasmodium parasites from its body by biting into an unsuspecting victim [2]. 

Commonly, the most appropriate diagnosis is the use of thick and thin blood smears on glass 

slides extracted from a potentially infected host. The slides then pass through a light 

microscope for observation. However, this diagnostic method requires an advanced level of 

proficiency to attain accurate results [3]. Furthermore, additional complexity during diagnosis 

and treatment can lead to unreliable and slow outcomes due to insufficient specialized 

equipment and expertise in developing areas with many cases [4]. 

In recent years, the difficulty of relying only on experts and expensive medical equipment 

to perform medical diagnosis had reduced with the help of Deep Learning (DL). Medical 

experts can now detect and recognize various life-threatening diseases more rapidly, 

increasing efficiency in decision making [5-7]. In this modern era, the growing fascination of 

DL researchers had continuously made improvements in medical imaging. With the state-of-

the-art DL models, the process of medical diagnosis had never been the same [8-10]. An 

influential and well-known DL model, the Convolutional Neural Network (CNN), 

revolutionized the way machines interpret images in the modern era. With CNN, computers 

can learn patterns from a large set of 2D-array images using striding filters, a backpropagation 

algorithm, and various combinations of techniques that aim to generate accurate predictions 

like a real human being [11].  

Fig. 1 illustrates the CNN structure and how it learns from features to predict an input 

image. CNN performs feature extraction with a multi-layer architecture that consists of several 

methods. The convolution process involves an NxN (e.g., 3x3) sized filter that captures basic 

patterns from the original image to generate a stack of feature maps passed to a series of 

succeeding layers. The pooling layers then downsize the entire feature set with a smaller 

striding filter (e.g., 2x2) for efficiency. The process repeats until it reaches the fully-connected 

(FC) layers that merge the patches of high to low-level features to generate a highly detailed 

representation. Each FC layer and convolution contains neurons that are weighted based on 

the importance of features learned. The activation layer or classifier then yields the probability 

of what the unseen image represents based on the accumulated scores from the network’s 

earlier levels [12]. 

 
 

Fig. 1.  The architecture of a standard convolutional neural network 
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CNN has recently achieved success in image classification, recognition, localization, and 

detection challenges on numerous occasions to solve real-world problems. The rise of more 

extensive, more profound, and more complex CNNs became a trend in the field of DL and 

computer vision. State-of-the-art models like AlexNet [13], VGG [14], GoogleNet [15], and 

ResNet [16] made significant improvements since the original CNN. These changes include 

adding layers, increasing the network width with separable convolutions, and eliminating the 

results’ saturation from the increased model volume [17, 18]. The previous CNN became more 

complex than ever, turning it into a Deep Convolutional Neural Network (DCNN). DCNNs 

had proven its capability through the ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC). A competition that put computer vision solutions to the test; this test includes 1000 

images with a million samples to be classified simultaneously. However, replicating DCNNs 

for specific purposes requires a tremendous amount of computing power due to its 

architectural complexity and data requirement [19]. With this dilemma, a new method emerged 

called transfer learning. This approach solved the re-usability of large-scale DCNNs by 

transferring its pre-trained weights from ImageNet that contain essential features for image 

recognition to train other models. With fine-tuning methods, DCNNs can now perform specific 

tasks beyond its original purpose without the need for tremendous computing resources that 

can even assist in the field of medical image analysis [20]. Currently, several works have 

explored such methods to perform the automated task of detecting malaria parasites from 

blood cell images. DCNNs through the years have kept getting better to cope up with various 

demands not just in classification accuracy but also in overall efficiency and scalability. 

However, not much study had employed transfer learning and fine-tuning to recently released 

DCNN models to perform the task of malaria parasite detection. Therefore, in our work, we 

focused on employing these methods to recent DCNNs for malaria parasite detection in blood 

smears to yield new findings and conclusions that may establish a new perspective for future 

researchers that may also tackle such a difficult task. 

2. Related Works 

In this section, we reviewed several related works that employed CNN and similar solutions 

in detecting and classifying infections of malaria parasites from blood smears.  

To assist in the growing cases of malaria, the work of Devi et al. devised a computer-

assisted solution by combining several Machine Learning (ML) models to develop a hybrid 

classifier. Through microscopic samples of malaria-infected and non-infected blood cells, their 

work applied SVM, KNN, Naïve Bayes, and Artificial Neural Networks (ANN), which 

attained a maximum 96.32% accuracy with ANN in detecting parasitic infections. The model 

trained using images with a morphological segmentation, which extracted the cell pixels from 

the background using thresholds and watershed techniques [21]. 

With the growing popularity of DL and CNN, Liang et al. proposed their version of a 16-

layer CNN. At that time, they indicated that CNN is a robust algorithm that can learn visual 

patterns effectively compared to a classical ML. Their intuition behind the added layers 

enhances the existing CNN’s learning capability and generates more feature maps to exceed 

its previous performance. They managed to end up with a successful 97.37% accuracy, using 

randomly generated weights, concluding that their modified CNN can outperform even the 

current state-of-the-art models at the time in terms of malaria classification [22].  

Soon after, another popular DL model was proposed for the same tasks by Bibin et al. Their 

work is the first to apply a Deep Belief Network (DBN) to perform a binary class classification 

of malaria blood smears. DBN is a multi-stacked layer of Restricted Boltzmann Machines 
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(RBM), where each node pass and receives inputs multiplied by its corresponding weights. 

Their DBN had a depth of 484 visible units and an output layer of two, containing four hidden 

layers that had 600 nodes each. The results attained an accuracy of 96.21%, indicating DBN’s 

effectiveness in classifying malaria-infected and non-infected blood smears [23]. 

With the ease of fusing new ideas into a CNN model, Gopakumar et al. customized a CNN 

model for a glass slide scanner to detect malaria parasite infections. The custom CNN model 

trained with focus stacked samples managed to resolve cells’ counting dilemma through a two-

level segmentation approach. Their results became successful as it reached an accuracy of 

98.47%. Their study provided a low-cost, quick, and easy way to diagnose malaria compared 

to existing solutions on the market [24]. 

Gezahegn et al. performed other methods combining ML and image processing. Their work 

compared handcrafted feature extractors’ performances like Scale Invariant Feature Transform 

(SIFT) and traditional extraction methods for classifying malaria infections. The classifier 

used was the SVM algorithm. Their accuracy achieved 78.89% with a sensitivity of 80% and 

76.67% specificity with their trained model. The study showed that feature extraction with the 

conventional SVM for detecting and diagnosing malaria is still improvable if a robust feature 

set existed. However, with the limited number and difficulty of data collection, fewer features 

are generated, making it difficult for the selected algorithms to learn further [25]. 

With the work of Rajaraman et al., instead of traditional feature extraction methods, they 

used DCNNs to produce a higher number of features from a balanced dataset of 27,558 cell 

images from blood smears, infected and non-infected by malaria parasites.  Their selected 

models that performed the classification consist of AlexNet, VGG16, ResNet50, Xception, 

DenseNet-121, and their proposed model. The following are considered state-of-the-art 

employed with an additional number of layers and sophisticated modifications compared to 

conventional CNN. They generated exceptional classification results from training the 

classifiers with features extracted from optimal layers of each model to produce accuracy 

scores of 94.4%, 95.9%, 95.9%, 91.5%, 95.2%, and 92.7%, respectively with the mentioned 

models. Even with similar accuracies, ResNet50 attained higher specificity and performance 

than VGG16. Their work also included optimization measures like hyper-parameter 

optimization and regularization techniques to increase model performance [26]. 

Vijayalakshmi et al. then introduced a hybrid DCNN combined with traditional ML. The 

architecture is composed of a pre-trained VGG feature extractor with an SVM classifier. Their 

VGG-SVM applied transfer learning to train the upper layers while maintaining pre-trained 

parameters from ImageNet. The results generated an accuracy of 89.21% with VGG16-SVM, 

while 93.13% from the VGG19-SVM [27].  

Due to the limited data produced for such a complicated task, Pattanaik et al. decided to 

use unsupervised algorithms rather than data augmentation methods. Their work proposed a 

novel multi-layered CAD scheme with various node sizes incorporated with a Functional Link 

ANN (FLANN) and a Stacked Sparse Auto Encoder (SSAE) to increase the size of features 

during training. Through their approach, they applied the 10-folds cross-validation and 

achieved an impressive accuracy of 89.10% from a limited dataset of 1182 images [28].  

Another work from Pattanaik et al. employed a novel Multi-Magnification ResNet (MM-

ResNet). Their novel MM-ResNet had built several concatenations of input and output layers 

to prevent the vanishing gradient problem and attain improved performance compared to other 

state-of-the-art. With that said, their model preserves the small to large feature samples across 

the network without drastic saturation and achieves better information handling than the 

baseline model. Together with the parallelism technique to train multiple inputs, they trained 

their model with 1000 epochs and achieved a remarkable 98.08% accuracy [29]. 
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The growing importance of mobile applications made Fuhad et al. develop a mobile-based 

application for classifying malaria infection using SVM and KNN. Their method used CNN 

as the feature extractor applied with knowledge distillation, augmentation, and autoencoders. 

Through their process reached an accuracy of 99.23% with the help of autoencoders.  A 

generative DL model helped create synthetic versions of the original input using an encoder 

and decoder. Even with such a robust approach, their work still delivered a lightweight model 

that can work efficiently with mobile devices [30].  

The following works discussed made significant contributions for diagnosing malaria 

infection in blood smears. However, as we mentioned in our introduction, other forms of 

DCNN models came out recently that may also have a significant impact on malaria diagnosis. 

Upon our investigation, a recent study made by Marques et al., [31] presented that a recent 

DCNN like the EfficienNet model could perform remarkably in terms of several medical 

image classifications like chest x-rays. They conducted experiments with the EfficientNet 

model and tackled the task of chest x-ray classification from samples with and without 

COVID-19 infections. Justified by their results, their fine-tuned EfficientNet outperformed 

some of the previously released well-known DCNNs like VGG [14], ResNet [16], MobileNet 

[32] with a 99.62% accuracy. With their work,  it has shown to us that EfficientNet has the 

potential to emit promising results in other fields of medical imaging. In the best of our 

knowledge, no existing study had made use of the said model in terms of malaria parasite 

detection and classification from blood smears. 

Fig. 2 presents the recent EfficientNetB0 baseline model. We propose to use the 

EfficientNetB0 baseline model as our entry point that takes in an input image with a 

224x224x3 dimension. The model then extracts features throughout the layers by using 

multiple convolutional (Conv) layers using a 3x3 receptive field and the mobile inverted 

bottleneck Conv (MBConv). Our intuition to employ the EfficientNetB0 is due to its balanced 

depth, width, and resolution that can produce a scalable yet accurate and easily deployable 

model. Compared to other DCNNs, EfficientNetB0 scales each dimension using a fixed set of 

scaling coefficients. This approach surpassed other state-of-the-art models that trained on the 

ImageNet dataset. Even with transfer learning, EfficientNet still achieved exceptional results, 

indicating its effectiveness beyond the usual ImageNet dataset. In its release, the model had 

scales of 0 to 7, showing an increase of parameter size and even accuracy. With the recent 

EfficientNet, users and developers can access and provide improved ubiquitous computing 

imbued with DL capabilities in several platforms for various needs [33].  

 
 

Fig. 2.  EfficientNetB0 baseline model architecture [33] 

 

It is worth to mention that this work focuses on the empirical analysis of the recent DCNNs 

and EfficientNetB0 towards the classification of malaria parasitized and uninfected blood 

smears.  

Our work mainly contributes to the use of the EfficieNetB0 model with modified ending 

layers incorporated through layer freezing via fine-tuning and trained to address the 

problematic classification and detection of malaria parasites from blood smears. With our 
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proposed method, we aim to produce a model that consumes a very minimal disk space that 

makes it easily deployable, transferrable, and reproducible as needed, whether in the local 

network or through the internet without sacrificing performance. Our work also compares and 

analyzes the performance of EfficientNetB0 to other recent state-of-the-art models that have 

not yet performed the classification of malaria-infected blood smears.  Considering this 

inclusion can emanate additional perspectives for other researchers in the future. Lastly, our 

work provides transparency by providing the detection capability of the modified 

EfficentNetB0 as opposed with other state-of-the-art models in terms of malaria parasite 

localization through the Gradient-Weighted Class Activation Mapping (GRAD-CAM) 

algorithm that the other studies did not include or performed. 

3. Materials and Methods 

3.1 Malaria Dataset 

The dataset used for this work came from the work of Rajaraman et al. [34]. Table 1 presents 

the dataset specification with a total of 27,558 blood smears separated into two different 

classes, namely, malaria parasitized and uninfected blood cells, each having 13,779 copies and 

has a three-channel format of Red, Green, Blue (RGB), making it suitable for training.  

 In our work, we allocated the dataset equally for both classes to prevent class superiority 

over the other [35]. To do this, we parted the dataset into two, having 80% (22046) for training 

and 20% (5512) for validation. The images are partitioned in a stochastic fashion to prevent 

the increase of bias that may affect the model [36, 37]. Furthermore, we did not include any 

forms of augmentation or extensive pre-processing to let the models train on the actual images 

as it is, similarly to how it would be in most real-life situations. This reason is to highlight the 

strength of recent DCNN using limited training data but with a reasonable amount of validation 

data.  

However, the collection of images had no fixed dimension. Therefore, we normalized each 

image sample using an automated resizing script with Keras [38] that automatically resized all 

inputs into a 224x224 dimension. 
 

Table 1. Specification of malaria parasitized and uninfected dataset 

Samples Label Train (80%) Validation (20%) 

    

 

Parasitized 11023 2756 

 

Uninfected 11023 2756 

    

Total: 27,558  22046 5512 

3.2 Proposed Layers 

For us to make use of the pre-trained EfficientNetB0 to learn from our prepared data, we 

proposed to replace the final layers of the original EfficientNetB0 baseline model and add our 

set of layers to activate new weights from it.  
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Fig. 3 illustrates our proposed final layers for the EfficientNetB0 composed of a Global 

Average Pool (GAP), two FC dense layers, and a sigmoid classifier. To prevent instances of 

severe overfitting from the sophisticated feature handling, we added a pooling layer. The GAP 

layer further reduced the number of parameters by rescaling the height, width, and depth of 

the incoming tensor from the base model into a 1x1x3 dimension, respectively. We controlled 

the tremendous burst of features passing to the dense layer that can overwhelm the classifier 

by doing this method. In the said process, the GAP did not entirely reduce the portions of the 

feature maps. Instead, it averaged the entire spatial features and maintained the most intricate 

patterns required to recognize the image [39]. The GAP was also proven to work reliably with 

DCNNs in handling medical image classifications [40].  

Before predicting results, we directed the feature sets from the previous GAP to a dense 

layer consisting of 1024 hidden units connected to another dense layer with two neurons 

representing our two given labels. This approach provided a new set of weights and biases to 

each feature map through a linear fashion that produced a probability. Also, we applied a 

Rectified Linear Unit (ReLU) activation on the hidden layer of the 1024 dense layer to provide 

non-linearity and speed up the training process, as ReLU can immediately adjust all negative 

input values of the previous layer to zero [41]. 

 
 

Fig. 3.  Proposed final layers for fine-tuning the EfficientNetB0 model 
 

 Fig. 4 presents our selected classifier. The Sigmoid activation function served as a 

replacement for the multi-class classifier, Softmax. Similarly, Sigmoid is also a logistic 

function that specifically performs a binary class classification [42]. The S-shaped non-linear 

function binds values to a 0 or 1, indicating either a parasitized or an uninfected blood cell, 

respectively. The two neurons of the last dense layer represent these classes.  

 
Fig. 4.  Graph of the sigmoid activation function 
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3.3 Transfer Learning and Fine-Tuning 

Fig. 5 shows how we trained and finalized our model. First, with transfer learning, we enlarged 

the size of the training parameters pre-emptively. With the pre-initialized weights from 

ImageNet, the base model instantly used its features and improved image recognition. 

ImageNet weights contain features that can help detect shapes, edges, and other vital 

components needed for an image classification task [19]. This method accelerated the process 

with reduced efforts compared to randomly initialized weights [13]. 

As shown in the figure, our base model pre-trained with the ImageNet data consists of 1000 

different classes, with over 14 million images [43]. With this matter, fine-tuning is imperative, 

as the current weights and structure of the EfficientNetB0 cannot immediately work for our 

selected task [44]. Therefore, we froze the beginning layers on the base model, then trained 

our proposed ending layers with the malaria train data through fine-tuning. We managed to 

preserve the ImageNet features within the extraction layers with this approach and prevented 

it from getting overwritten during training updates. Subsequently, after training both the 

extractor and our proposed layers, we re-trained the entire network with the malaria dataset 

and the ImageNet weights and produced our final model. We then validated the final model 

with the use of our validation data. 

 
 

Fig. 5.  Transfer learning and fine-tuning process of the EfficientNetB0 malaria parasite classifier 

3.4 Hyper-Parameters and Loss Function 

This section presents the selected appropriate hyper-parameter values and loss function for the 

task to yield efficient results.  

Identifying the performance of a DL model does not solely rely on accuracy but also in 

terms of loss [45].  A DL model’s main objective is to attain its lowest possible rate of errors 
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as a model with a less calculated loss indicates better efficiency [46]. In this work, we selected 

the cross-entropy (CE) loss function to calculate the average measure in the distinction 

between the expected and predicted value. Equation (1) shows the measurement of loss for 

binary classification, where y represents the binary values of 0 or 1, and p is the probability 

[47].   
 

𝐶𝐸 = −(𝑦𝑙𝑜𝑔(𝑝) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝)) (1) 

 

To ensure the optimal decrease of loss during training, we directly selected Adam as our 

optimizer. This optimization algorithm operates as an adaptive gradient descent function that 

helps the weights decline faster towards the local minima [48]. We primarily chose Adam over 

other optimizers due to its ease of implementation, efficient memory consumption, and faster 

learning phase, compared to others like Stochastic Gradient Descent (SGD) [49] or RMSProp 

[50]. It is also worth mentioning that Adam recently had successful DL implementations that 

trained models for assisting in medical imaging analysis [51].  

Table 2 presents our hyper-parameter settings, where we have set a small learning rate (LR) 

to work well with the other selected hyper-parameters. Adam worked effectively and achieved 

rapid convergence in a short period than SGD [52]. The batch size of 32 provided a decent 

load to pass information through the network without consuming our entire computing 

memory. Moreover, we selected several durations to train each model increasingly to see how 

it will behave over time. With 10, 25, 50, and 100 epochs, the following are considered shorter 

than the other works. However, we primarily decided to use smaller numbers as we applied a 

faster optimizer. 
 

Table 2. Selected hyper-parameters for training 

Hyper-parameters Value 

Optimizer Adam 

LR 0.0001 

Batch Size 32 

Epochs 10, 25, 50, 100 

3.5 Evaluation Metrics 

In ML or DL, the Confusion Matrix (CM) is a standard tool that visualizes how accurate a 

trained model can predict from a respective validation dataset. The CM has corresponding 

rows and columns representing the actual class and the ground truth labels, consisting of a 

parasitized, uninfected blood cells. Simultaneously, the predicted values indicate the number 

of correct and incorrect predictions or classifications made for each validation sample. The 

True Positive (TP) denotes the number of correctly classified positive samples as positive, 

while True Negatives (TN) corresponds to the correctly predicted negatives as negatives. False 

Positives (FP) are predictions where the image was classified as positive but is not. In contrast, 

False Negatives (FN) are negative results but are positive [53]. 

With the following values, we computed for the overall accuracy, precision (PR), 

sensitivity (SE), specificity (SP), and the F1-score of each model. In this work, SE signifies 

the ratio of correctly predicted parasitized cells or TPs to all TPs and FNs, while SP refers to 

the other way around. PR is the frequency of how often the model makes a correct prediction 

of an actual class. The accuracy is the total of all accurate predictions out of all the given 

samples. At the same time, F1-score is the weighted average between PR and SE [53].  
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The following performance metrics are calculated based on the given equations below. 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (2) 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (3) 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (4) 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (5) 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2𝑇𝑃/(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) (6) 
 

4. Experimental Results and Discussion 

This section discussed the results generated during training and validation using the prepared 

dataset. We identified the number of correctly classified and misclassified samples using a CM 

and calculated the performance through the mentioned metrics. To further evaluate the 

efficiency, we included the produced weight sizes and the Grad-CAM algorithm’s activation 

maps.  

4.1 Accuracy and Loss 

Fig. 6 presents the accuracy and loss graphs against the various epochs calculated with the CE 

loss. The proposed model’s training and validation accuracy had shown a rapid increase within 

a short period with the given hyper-parameter values. However, the results of the validation 

accuracy stopped increasing at around 93% to 94%. In contrast, the validation loss had a bit 

of trouble and generated some unstable oscillations on the graph. Nonetheless, at the end of 

each phase, we evaluated that all models still had an exceedingly small error gap, except for 

the model that validated with 25 epochs that had a severe overfitting problem at the end.  
 

 
Fig. 6.  Train and validation trends of the proposed model using various epochs 
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4.2 Classification Performance 

To determine the classification performance, we utilized the CM for a visual understanding of 

how well the model classified each sample. We then calculated its performance using our 

selected performance metrics from section 3.5. 

Table 3 presents the EfficientNet model results that trained with various epochs using a 

validation set of 5512 samples of malaria parasitized (2756) and uninfected (2756) blood cells.  

 
Table 3. Confusion matrix 

Epochs Classes 
Actual Values 

Parasitized Uninfected 

10 

P
re

d
ic

te
d

 V
a

lu
es

 

Parasitized 2573 183 

Uninfected 110 2646 

  

25 
Parasitized 2612 144 

Uninfected 202 2554 

  

50 
Parasitized 2587 169 

Uninfected 123 2633 

  

100 
Parasitized 2559 197 

Uninfected 109 2647 

 

In Table 4, using the CM matrix, we calculated the overall performance of the 

EfficientNetB0 according to its accuracy, PR, SE, SP, and F1-Score. Additionally, we 

compared our results with other recent state-of-the-art DCNNs trained and validated using the 

same approach. The number that follows the name of the model corresponds to the number of 

epochs. 

EfficientNetB0-50 attained the highest accuracy of 94.70% from our evaluated results, 

followed by EfficientNetB0-10 with 94.68%. On the other hand, InceptionResNetV2-50 

managed to reach the highest PR of 95.10%, followed by EfficientNetB0-25 with 94.78%. In 

terms of SE, ResNet152V2-100 performed best with 97.25% and ResNet152V2-100, next to 

it with 96.18%. While in SP, InceptionResNetV2-50 achieved the highest score of 94.98% and 

having EfficientNetB0-25 next to it with a 94.66%. 

Therefore, EfficientNetB0-50, with the highest F1-score of 94.66%, states overall 

dominance towards the task than the other state-of-the-art trained in this work. Furthermore, 

we observed that training up to 100 epochs with our proposed approach did not show much 

performance improvement. This reason mainly occurred due to the limited train data and large 

validation data ratio. 

 
Table 4. Comparison of performance with other recent state-of-the-art models 

Model ACC (%) PR (%) SE (%) SP (%) F1 (%) 

EfficientNetB0-10 94.68 93.36 95.90 93.53 94.61 

EfficientNetB0-25 93.72 94.78 92.82 94.66 93.79 

EfficientNetB0-50 94.70 93.87 95.46 93.97 94.66 

EfficientNetB0-100 94.45 92.85 95.91 93.07 94.36 

ResNet152V2-10 93.85 92.63 94.94 92.81 93.77 

ResNet152V2-25 94.03 92.02 95.88 92.33 93.91 

ResNet152V2-50 94.32 92.31 96.18 92.61 94.20 

ResNet152V2-100 94.29 91.15 97.25 91.67 94.10 

NASNetMobile-10 93.29 92.96 93.57 93.01 93.27 
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4.3 Saliency Maps 

We employed the Grad-CAM algorithm to present a visualized localization of salient features 

on the infected blood cell to add transparency to our results. The Grad-CAM is a generic 

algorithm that makes use of the final activation layer of a CNN model. From there, a set of 

high-level features generate in the form of a heatmap.  

According to Selvaraju et al., the algorithm calculates the classes’ gradient score to its 

corresponding feature maps from the convolutional layers to generate the visual heatmap. The 

returning gradients then enter the GAP to capture the importance of the individual weights. 

Subsequently, the combined weighted feature maps are activated with a Rectified Linear Unit 

(ReLU) function to achieve the Grad-CAM heatmap [54].  

In Fig. 7(b), the generated features in the form of a heatmap indicate the area where the 

model detects an infection. To make use of (b) effectively, we pre-processed the input image 

(a) and overlapped it with our produced heatmap (b) to see how the model detected an 

infection. The output (c) from this approach had shown us how the model created its decision 

based on its interpretation. Furthermore, the results of EfficientNetB0 in Table 4 consistently 

shown that even with the change in accuracy and epoch, there is no observable difference seen 

on its Grad-CAMs. However, we observed a significant change and inconsistency in attention 

based on heatmaps’ dissipation across the infection’s surrounding areas with the other models.  

 

 
Fig. 7.  Process and application of the Grad-CAM algorithm to the original image 

  

In Fig. 8, we present the comparison of parasite detection using the Grad-CAM algorithm 

were (a) to (e) showed four parasitized and four uninfected test samples for each model. From 

our observations, the heatmap of (b) and (c) dissipated widely, indicating a dynamic shift of 

attention towards the other sections and away from the object of interest. While (d) and (e) 

somehow managed to keep its attention on the crucial areas. Unlike the rest, (a) presents the 

most compelling interpretation and precise detection of parasites as the heated area maintained 

the infection’s better localization. The other samples with a more dispersed heatmap may have 

a higher chance of misclassification due to the increased detection of irrelevant features [55]. 

NASNetMobile-25 93.67 93.21 94.07 93.28 93.64 

NASNetMobile-50 93.56 93.00 94.06 93.07 93.52 

NASNetMobile-100 93.21 92.34 93.98 92.48 93.16 

InceptionV3-10 93.31 93.58 93.07 93.54 93.32 

InceptionV3-25 93.63 93.76 93.52 93.74 93.64 

InceptionV3-50 93.32 93.80 92.92 93.74 93.36 

InceptionV3-100 93.02 90.46 95.33 90.92 92.83 

InceptionResNetV2-10 92.56 89.04 95.78 89.76 92.29 

InceptionResNetV2-25 94.19 92.49 95.76 92.74 94.09 

InceptionResNetV2-50 93.90 95.10 92.88 94.98 93.98 

InceptionResNetV2-100 94.03 91.87 96.02 92.21 93.90 
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As for the uninfected samples, all models produced a clear vision. This outcome tells us that 

the models managed to identify an uninfected blood sample much more comfortable than a 

parasitized blood cell, and EfficientNetB0 had the most outstanding results.  

 
Fig. 8.  Comparison of Grad-CAM samples of (a) EfficientNetB0 with (b) InceptionResNetV2, (c) 

InceptionV3, (d) NASNetMobile, and (e) ResNet152V2 

4.4 Weight Size 

Fig. 9 presents our generated weight sizes regardless of the epochs as it did not contribute to 

the change of size. The following shows that NASNetMobile produced the lowest with only 

31.3MB, considering its design solely made for mobile devices. Next to it, EfficienNetB0 had 

a size of 31.5MB, making it only a bit larger than NASNetMobile. For the other trained 

models, ResNet152V2 had the largest with 249MB, InceptionResNetV2 with 227MB, and 

InceptionV3 with 108MB. The reason for the enlarged capacity requirement came from the 

number of parameters, model depth, and complexity.  

 

 
Fig. 9.  Comparison of weight sizes with other recent state-of-the-art models 

4.5 Discussion 

According to our evaluated results, our pre-trained and fine-tuned EfficientNetB0 model did 

not require stringent pre-processing, optimization, data augmentation, and even long training 

epochs to attain a highly accurate performance. Even with a less rigorous selection of hyper-

parameter values and training only with a minimum of ten epochs, the fine-tuned EfficientB0 

combined with our proposed layers achieved an accuracy of 94.68% from our validation data 

of 5512 images. It then increased further up to 94.70% with fifty epochs. However, training 

the model further than fifty epochs did not contribute any improvements in terms of accuracy. 

Furthermore, to show our proposed method’s improvements compared to the EfficientNetB0 

trained without it, we present a set of results in Table 5. 

As presented, we observed a significant difference in performance between an 

EfficientNetB0 trained with and without our method. The EfficientNetB0 trained end-to-end 

without our proposed freezing approach, and replacement layers attained its highest validation 

accuracy of only 92.80% from the similar validation set of 5512 images with 100 epochs. 

Unlike the model with our proposed method, the highest accuracy achieved was 94.70% 

accuracy trained with only 50 epochs, making it a better approach. From these results, we 
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identified that the model trained with the replacement layers compared to the conventional 

structure had better classification prowess in terms of malaria-infected and uninfected blood 

cells due to the additional features produced mainly for it. With that said, our procedure to 

incorporate the proposed replacement layers with the freezing method attained a beneficial 

accelerated convergence and better overall performance for the EfficientNetB0.  

 
Table 5. Results of the proposed EfficientNetB0 model with and without the proposed method 

Method Epochs ACC (%) PR (%) SE (%) SP (%) F1 (%) 

With our proposed method 

10 94.68 93.36 95.90 93.53 94.61 

25 93.72 94.78 92.82 94.66 93.79 

50 94.70 93.87 95.46 93.97 94.66 

100 94.45 92.85 95.91 93.07 94.36 

Without our proposed method 

10 91.15 90.53 91.66 90.65 91.09 

25 91.96 92.42 91.59 92.35 92.00 

50 92.34 91.76 92.84 91.86 92.30 

100 92.80 91.47 93.96 91.69 92.70 

 

For further comparison, Table 6 presents a performance summary of this work and other 

existing studies that used CNN-based solutions for malaria parasite detection and blood smears 

classification. It is worth to mention that this work does not directly compare the following 

works due to the differences in data preparation, training and validation methods, and 

computing resources used. However, other researchers can still attain additional perspectives 

with the current solutions produced for the said topic through the given summary and 

discussion.  

Table 6 shows that our work did not achieve the highest accuracy due to the mentioned 

differences in approach. However, this work still has much room to scale and improve as our 

model relied only on the base EfficientNetB0. The recently released model became the 

advantage of this work as it can train in a shorter span and still achieve remarkable results than 

others that required hundreds to thousands of epochs, making it easier to reproduce and 

improve as needed. Even with a non-specialized standard GTX 1070 with only 8GB RAM, 

our work attained such a result.  Our produced model also consumed a minimal disk space that 

conveys the ease of deployment and transfers on most platforms, whether local or the internet, 

considering that EfficientNet models existed to contribute to ubiquitous computing compared 

to previous state-of-the-art DCNNs that came before it like like the base ResNet50, and even 

the conventional CNNs [56]. With that said, future users, researchers, and the likes can benefit 

from this work that may require its purpose, particularly in developing countries with low-end 

resources or poor internet connectivity. 

Nonetheless, this work still lean towards an empirical analysis rather than a developmental 

approach about how recent DCNN models, specifically EfficientNet, in malaria parasite 

detection and classification from blood smears performs.  

 
Table 6. Comparison of performance with other similar studies that used CNN-based models 

Method ACC (%)  SE (%) SP (%) 

EfficientNetB0 (Our work) 94.70 95.46 93.97 

16-Layer CNN [22] 97.37 96.99 97.75 

DBN [23] 96.21 97.60 95.92 

Custom-CNN [24] 98.47 97.06 98.50 

ResNet50 [26] 95.9 94.7 97.2 

MM-ResNet [28] 98.08 95.38 98.30 

Novel CAD Scheme [29] 89.10 93.90 83.10 
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5. Conclusion 

Due to the difficulty of having an accessible, low-cost, rapid, and accurate malaria diagnosis 

in most developing countries, many people still suffer from early fatalities. With that said, the 

mortality rate caused by malaria kept increasing. Therefore, we had the initiative to conduct 

an empirical analysis of recent DCNNs in classifying and detecting malaria parasite infections 

from blood smears to contribute to solving this problem. In our work, a recent state-of-the-art 

model like EfficientNetB0 trained with the use of pre-learned weights and fine-tuned to 

classify between a parasitized and uninfected blood cells from blood smears. With the help of 

open-source data from NIH, we trained the model using 22046 images of the mentioned blood 

cells. The data then had minimal pre-processing to normalize the input data to a 224x224 

dimension for added efficiency with our selected model. Upon our evaluation with 5512 

images, the EfficientNetB0 outmatched recent state-of-the-art DCNNs like NASNetMobile, 

InceptionV3, InceptionResNetV2, and ResNetV2-152. The highest attained accuracy rate of 

94.70% came from the EfficientNetB0 trained for only 50 epochs, while the 10-epoch variant 

also had a remarkable 94.68%. Such minimal difference in performance regarding the training 

length justifies that the 10-epoch variant is better for most cases.  

As concluded from our results and discussion, the fine-tuned EfficientNetB0 based on 

transfer learning could efficiently classify and detect parasitized and uninfected blood samples 

when fine-tuned properly. Even with the absence of intricate image pre-processing, 

augmentation, and cumbersome optimization methods, EfficientNetB0 can attain exceptional 

results. Hence, the lightweight and easily reproducible model can help diagnose malaria 

infections in areas that require such a solution even without access to high-end computing 

resources. However, we do not guarantee that this work will have an entirely similar 

performance to a real-life scenario. During and after our experiments, we hypothesized a 

particular caveat on training DCNN models, that it might not generalize well with external 

samples compared to the internal validation set used in most studies including this work due 

to the difference of capture devices and the morphological complexity in blood cell samples 

worldwide. Therefore, we recommend performing further studies that include the collection 

of additional data from other countries with the use of various capture devices, and potential 

deployments in diverse platforms to analyze this hypothesis and generate future work 

improvements to guarantee worldwide acceptability. 
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