• Title/Summary/Keyword: Time Warping

Search Result 292, Processing Time 0.023 seconds

Mobile Gesture Recognition using Dynamic Time Warping with Localized Template (지역화된 템플릿기반 동적 시간정합을 이용한 모바일 제스처인식)

  • Choe, Bong-Whan;Min, Jun-Ki;Jo, Seong-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.482-486
    • /
    • 2010
  • Recently, gesture recognition methods based on dynamic time warping (DTW) have been actively investigated as more mobile devices have equipped the accelerometer. DTW has no additional training step since it uses given samples as the matching templates. However, it is difficult to apply the DTW on mobile environments because of its computational complexity of matching step where the input pattern has to be compared with every templates. In order to address the problem, this paper proposes a gesture recognition method based on DTW that uses localized subset of templates. Here, the k-means clustering algorithm is used to divide each class into subclasses in which the most centered sample in each subclass is employed as the localized template. It increases the recognition speed by reducing the number of matches while it minimizes the errors by preserving the diversities of the training patterns. Experimental results showed that the proposed method was about five times faster than the DTW with all training samples, and more stable than the randomly selected templates.

Finding the optimal frequency for trade and development of system trading strategies in futures market using dynamic time warping (선물시장의 시스템트레이딩에서 동적시간와핑 알고리즘을 이용한 최적매매빈도의 탐색 및 거래전략의 개발)

  • Lee, Suk-Jun;Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.255-267
    • /
    • 2011
  • The aim of this study is to utilize system trading for making investment decisions and use technical analysis and Dynamic Time Warping (DTW) to determine similar patterns in the frequency of stock data and ascertain the optimal timing for trade. The study will examine some of the most common patterns in the futures market and use DTW in terms of their frequency (10, 30, 60 minutes, and daily) to discover similar patterns. The recognized similar patterns were verified by executing trade simulation after applying specific strategies to the technical indicators. The most profitable strategies among the set of strategies applied to common patterns were again applied to the similar patterns and the results from DTW pattern recognition were examined. The outcome produced useful information on determining the optimal timing for trade by using DTW pattern recognition through system trading, and by applying distinct strategies depending on data frequency.

Similarity-Based Subsequence Search in Image Sequence Databases (이미지 시퀀스 데이터베이스에서의 유사성 기반 서브시퀀스 검색)

  • Kim, In-Bum;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.501-512
    • /
    • 2003
  • This paper proposes an indexing technique for fast retrieval of similar image subsequences using the multi-dimensional time warping distance. The time warping distance is a more suitable similarity measure than Lp distance in many applications where sequences may be of different lengths and/or different sampling rates. Our indexing scheme employs a disk-based suffix tree as an index structure and uses a lower-bound distance function to filter out dissimilar subsequences without false dismissals. It applies the normaliration for an easier control of relative weighting of feature dimensions and the discretization to compress the index tree. Experiments on medical and synthetic image sequences verify that the proposed method significantly outperforms the naive method and scales well in a large volume of image sequence databases.

Detection of Equipment Faults at Sequencing Batch Reactor Using Dynamic Time Warping (동적시간와핑을 이용한 연속회분식 반응기의 장비고장 감지)

  • Kim, Yejin
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.525-534
    • /
    • 2016
  • The biological wastewater treatment plant, which uses microbial community to remove organic matter and nutrients in wastewater, is known as its nonlinear behavior and uncertainty to operate. Therefore, operation of the biological wastewater treatment process much depends on observation and knowledge of operators. The manual inspection of human operators is essential to manage the process properly, however, it is impossible to detect a fault promptly so that the process can be exposed to improper condition not securing safe effluent quality. Among various process faults, equipment malfunction is critical to maintain normal operational state. To detect equipment faults automatically, the dynamic time warping was tested using on-line oxidation-reduction potential (ORP) and dissolved oxygen (DO) profiles in a sequencing batch reactor (SBR), which is a type of wastewater treatment process. After one cycle profiles of ORP and DO were measured and stored, they were warped to the template profiles which were prepared already and the distance result, accumulated distance (D) values were calculated. If the D values were increased significantly, some kinds of faults could be detected and an alarm could be sent to the operator. By this way, it seems to be possible to make an early detecting of process faults.

Hybrid Scaling Based Dynamic Time Warping for Detection of Low-rate TCP Attacks

  • So, Won-Ho;Yoo, Kyoung-Min;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.592-600
    • /
    • 2008
  • In this paper, a Hybrid Scaling based DTW (HS-DTW) mechanism is proposed for detection of periodic shrew TCP attacks. A low-rate TCP attack which is a type of shrew DoS (Denial of Service) attacks, was reported recently, but it is difficult to detect the attack using previous flooding DoS detection mechanisms. A pattern matching method with DTW (Dynamic Time Warping) as a type of defense mechanisms was shown to be reasonable method of detecting and defending against a periodic low-rate TCP attack in an input traffic link. This method, however, has the problem that a legitimate link may be misidentified as an attack link, if the threshold of the DTW value is not reasonable. In order to effectively discriminate between attack traffic and legitimate traffic, the difference between their DTW values should be large as possible. To increase the difference, we analyze a critical problem with a previous algorithm and introduce a scaling method that increases the difference between DTW values. Four kinds of scaling methods are considered and the standard deviation of the sampling data is adopted. We can select an appropriate scaling scheme according to the standard deviation of an input signal. This is why the HS-DTW increases the difference between DTW values of legitimate and attack traffic. The result is that the determination of the threshold value for discrimination is easier and the probability of mistaking legitimate traffic for an attack is dramatically reduced.

Pruning and Matching Scheme for Rotation Invariant Leaf Image Retrieval

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.280-298
    • /
    • 2008
  • For efficient content-based image retrieval, diverse visual features such as color, texture, and shape have been widely used. In the case of leaf images, further improvement can be achieved based on the following observations. Most plants have unique shape of leaves that consist of one or more blades. Hence, blade-based matching can be more efficient than whole shape-based matching since the number and shape of blades are very effective to filtering out dissimilar leaves. Guaranteeing rotational invariance is critical for matching accuracy. In this paper, we propose a new shape representation, indexing and matching scheme for leaf image retrieval. For leaf shape representation, we generated a distance curve that is a sequence of distances between the leaf’s center and all the contour points. For matching, we developed a blade-based matching algorithm called rotation invariant - partial dynamic time warping (RI-PDTW). To speed up the matching, we suggest two additional techniques: i) priority queue-based pruning of unnecessary blade sequences for rotational invariance, and ii) lower bound-based pruning of unnecessary partial dynamic time warping (PDTW) calculations. We implemented a prototype system on the GEMINI framework [1][2]. Using experimental results, we showed that our scheme achieves excellent performance compared to competitive schemes.

Analysis of Pitching Motions by Human Pose Estimation Based on RGB Images (RGB 이미지 기반 인간 동작 추정을 통한 투구 동작 분석)

  • Yeong Ju Woo;Ji-Yong Joo;Young-Kwan Kim;Hie Yong Jeong
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.16-22
    • /
    • 2024
  • Pitching is a major part of baseball, so much so that it can be said to be the beginning of baseball. Analysis of accurate pitching motions is very important in terms of performance improvement and injury prevention. When analyzing the correct pitching motion, the currently used motion capture method has several critical environmental drawbacks. In this paper, we propose analysis of pitching motion using the RGB-based Human Pose Estimation (HPE) model to replace motion capture, which has these shortcomings, and use motion capture data and HPE data to verify its reliability. The similarity of the two data was verified by comparing joint coordinates using the Dynamic Time Warping (DTW) algorithm.

Conceptual Framework for Pattern-Based Real-Time Trading System using Genetic Algorithm (유전알고리즘 활용한 실시간 패턴 트레이딩 시스템 프레임워크)

  • Lee, Suk-Jun;Jeong, Suk-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.123-129
    • /
    • 2013
  • The aim of this study is to design an intelligent pattern-based real-time trading system (PRTS) using rough set analysis of technical indicators, dynamic time warping (DTW), and genetic algorithm in stock futures market. Rough set is well known as a data-mining tool for extracting trading rules from huge data sets such as real-time data sets, and a technical indicator is used for the construction of the data sets. To measure similarity of patterns, DTW is used over a given period. Through an empirical study, we identify the ideal performances that were profitable in various market conditions.

Generalization of the Spreading Function and Weyl Symbol for Time-Frequency Analysis of Linear Time-Varying Systems

  • Iem, Byeong-gwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.628-632
    • /
    • 2001
  • We propose time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes. Obtained warping the narrowband Weyl symbol (WS) and spreading function (SF), the new TF tools are useful for analyzing LTV systems and random processes characterized by generalized frequency shifts, This new Weyl symbol (WS) is useful in wideband signal analysis. We also propose WS an tools for analyzing systems which produce dispersive frequency shifts on the signal. We obtain these generalized, frequency-shift covariant WS by warping conventional, narrowband WS. Using the new, generalized WS, we provide a formulation for the Weyl correspondence for linear systems with instantaneous of linear signal transformation as weighted superpositions of non-linear frequency shifts on the signal. Application examples in signal and detection demonstrate the advantages of our new results.

  • PDF

A study on electricity demand forecasting based on time series clustering in smart grid (스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구)

  • Sohn, Hueng-Goo;Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.193-203
    • /
    • 2016
  • This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).