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Abstract

We propose time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random
processes. Obtained warping the narrowband Weyl symbol (WS) and spreading function (SF), the new TF tools are
useful for analyzing LTV systems and random processes characterized by generalized frequency shifts. This new
Weyl symbol (WS) is useful in wideband signal analysis. We also propose WS as tools for analyzing systems which
produce dispersive frequency shifts on the signal. We obtain these generalized, frequency-shift covariant WS by
warping conventional, narrowband WS. Using the new, generalized WS, we provide a formulation for the Weyl
correspondence for lincar systems with instantaneous frequency characteristics matched to wuser specified
characteristics. We also propose a new interpretation of linear signal transformations as weighted superpositions of
non-linear frequency shifts on the signal. Application examples in signal analysis and detection demonstrate the

advantages of our new results.
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1. Introduction

Time-frequency (TF) formulations of the conventional
Weyl symbol (WS) and its 2-D Fourier transform (FT),
the spreading function (SF), have been successfully used
in the analysis of linear time-varying systems and
nonstationary random processes [5,6,12]. The conven-
tional WS and SF are defined, respectively, as [5]

WS h= [ Kit+E =Ee P )
SFuny= [ K (t+F =D Pra (2)

for an operator L on L2(R) with operator kemel K ,(t, )
[2]. The WS can be interpreted as the transfer function
of a linear time-varying (L'TV) system or as the
time-varying spectrum of a nonstationary random
process. The 1-D inner product of the operator input x(t)
and output (L x)(t) can be expressed as the 2-D inner
product of the Wigner distribution (WD) [3] of the
operator input and the WS of the operator,

[z (Dat= [ [ WS (6.pWD (8 patdf  (3)
and the relationship in (3) is called the quadratic form of

x(t) [121. Here, %x(f,f)=fx(t+?r)x’(t——7r) e"/lfrrfdz.

is the Wigner distribution [3] of the process x(t). The
quadratic form provides a definition of a TF con-
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centration measure [12], and is useful in TF detection
[7,11] and analysis [8] applications. In the sense of the
quadratic form (3), we say that the WS is associated
with the WD.

The WS in (1) preserves constant time shifts, con-
stants frequency shifts, and scale changes on a random
process [5,6]

YN =(S XN =x(Ne *™=WS g (t, N = WSy (t—1, /)
YN =M. X NH=X(f~1)=WS e (t, )= WSg (¢t f~V)

YD =~ XL 1,1, = W5 4, (at, L)

where S: and My are the constant time-shift and
constant frequency-shift operators, respectively. Here, Rx
is the autocorrelation operator of X(f) with the operator
kernel KRX(fV)=E{X(f)X*(v)} and the expectation oper-
ator E{ e }. The WS also satisfies the unitarity property
defined a

S, 78 (4. DV y(t ptdf= T €y ) | HHDGm( Hf?”
4)

where €y and Gm(f) are eigenvalues and eigenfunc-
tions, respectively, of the kernel of the operator L, and v,
and Hy(f) are similarly defined for the operator V on
Lo(R). Using (1) and the kernel expansion TL(f,v)=X ¢,
Gn(f)Gn*(V), one can express the WS of L as a weighted
summation of the Wigner distribution of the eigenfun-
ctions of L, i.e. WS.(t,/)=2 &, WDan(t,f).

The SF provides an important interpretation of a time
varying system output as a weighted superposition of
time-shifted and frequency-shifted versions of the input
signal x(t), where the weight is the SF {12], ie.
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(Lx)(t)=J [ SFLT,Ve ™ (M:S: x)(t)dtdv. Here, (MvS:
N))=x(t-1)e™" is the TF shifted version of x(t). Thus,
the SF provides the amount of time shifts and frequency
lags produced by the LTV system. This is comparable
to the conventional interpretation of the (convolution)
output of a linear time-invariant (LTI) system as a
weighted superposition of time-shifted versions of the
input signal. The weight is the impulse response of the
LTI system and shows the amount of time shifts
produced by the LTI system. The support region of the
SF has been used to define underspread random pro-
cesses [5], a useful concept in detection applications [7].

When an LTV system produces dispersive (non-
constant) frequency shifts, the conventional WS and SF
are no longer adequate to characterize linear systems
whose nonstationary process is not matched to simple
time and frequency shifts. Thus, in this paper, we
propose new TF symbols and spreading functions as
tools for analyzing systems which produce dispersive
frequency shifts on the signal. These new TF symbols
are important since they can be interpreted as time-
varying transfer functions for such systems. We derive
such generalized TF symbol and spreading function by
warping the conventional narrowband WS and SF,
respectively. We provide a generalized TF formulation of
the quadratic form in (3) for linear systems with in-
stantaneous frequency characteristics matched to a
specified warping. Special examples will be given to
demonstrate how the generalized TF symbol and
spreading function greatly simplify when matched to the
system. Analysis and detection application examples
demonstrate the importance of these new TF techniques.

2. Generalization of Narrowband Weyl
correspondence

2.1 Hyperbolic Weyl Symbol and Spreading Function

If a system imposes hyperbolic frequency shifts and
scale changes on the input signal, new WS and new SF
are needed for analysis. The TF geometry of these new
WS and SF should reflect the hyperbolic system changes
on the input signal. Thus, for an operator Y on La(R’)
with kernel Kv(t,T), we define the hyperbolic WS (HWS)
and SF (HSF), respectively, as

HUS (=1t [ K f(te®, te e #™Rdt 150 (5)

HSF (&, 8) = fK Ate 2 te =2y ~ 200 gy

The relation between the HWS and the HSF is given as
HSF At B)=F,.. '[P AdHWS (t 7/D]]

where F' is the inverse Fourier transform operator
and P—B{x(D)= [ x(De ™"/t dt=px(&In)B), t > 0, is
a version of the Mellin transform [1]. Note the
similarities between the conventional WS (and SF) and
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the HWS (and HSF) summarized in Table 1 and 2. Row
4 shows that the hyperbolic WS in (5) can be obtained
from the conventional WS in (1) by first unitarily
warping the operator Y and then transforming the TF
axes. For the HSF, the axes are simply scaled since they
show only relative TF lags, not absolute TF locations.

The HWS preserves hyperbolic frequency shifts and
scale changes on a random process x(t), i.e

WD = 5D P OSHVS o1, ) = HUS (1, /L),
W=l (L) HWS 4 (1.9 = HVS m (L, ap,

where Ry and Rx are the autocorrelation operators of
y(t) and x(t), respectively. The HWS also satisfies the
unitarity property in (4). The quadratic form in (3) can
now be written in terms of the HWS and Qx(t,f), the
Altes—Marinovic Q-distribution [9],

(Yo o= (ndi= [ [ HWS (1, ) Q.(t, pddf.

This new form of the quadratic form may be useful in
detection applications of nonstationary processes and
systems with hyperbolic instantaneous frequency chara-
cteristics. These formulations are important as they
provide a new interpretation of these system outputs as
weighted superpositions of hyperbolic frequency-shifted
and scale changed versions of the input signal, i.e.

(Ya)(D)= [ [ HSF (&, Be ™ (H, C c0(D)dtd8

where (Hp x)(t)=€¢ 7" is the hyperbolic frequency
shift operator and (G, x)(t)=x(t/a)/lall/2 is the scaling
operator. Thus, HSFY weighs the relative importance of
hyperbolic frequency shifts and scale changes caused by
a linear system. In Section 3, we provide applications to
demonstrate the importance of the HWS.

2.2 Power Weyl Symbol and Spreading Function

We obtain the k-th power WS (PWS™) and the k-th
power SF (PSF™), for an operator Y on 12(R), by
warping the conventional WS and SF as shown in row 5
of Table 1 and 2. The relation between PWS®™ and PSF*®
1s given by

PSF(E, 8= F7' L A PP, PUEY (1, 70 (D) }}(6)

where PY —bem {x(0)}= [ x(0) W kJt*! dt is the &

-th power transform. The quadratic form can now be
expressed [4] in terms of PWS(x) and a power warped
version of the WD [10].

The operator output can be interpreted as a weighted
superposition of K-th power frequency shifts on the input
signal with weights PSF"y, i.e.

(YaXB= [ [ PSF@ (¢, Be /B e o (1) dedp

where x{K(t)=[1-sgn(t)Ttl-k{(1-k)/2¢ x(tll-sgn(t)T|t|-
k|1/k). An important fact is that when k=1, the PWS(k)
and PSF(x) simplify to the conventional WS and SF in
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(1) and (2), respectively. Hence, the relationship between
the PWS(x) and PSF(k) in (6) simplifies to the 2-D
Fourier transform relationship between the WS and SF.

Table 1. Various Weyl symbols for a given warping
function & (b). Here, Y is defined based on
the domain of & (b). For example, for the
HWS, Y is defined on L2(R+). The warping
operator is (W& x)(t)=x( & -1t/ ¢ (£ -1(tH05
and (WEWE-1x)(t)=x(t). Here, & In(b)=In(b),
& x (b)=sgn(b) Iblx, and & exp(b)=eh.

5 Weyl Symbol (WS) time-frequency
&8 representation
ltol GVVSY(t,f):W/S‘Wsywe"'(é(t),f/¢(t))

b WSL(t,f)=fKL(t+-§,t—-§r)e"2”fdr
Eln(b) HVVSY(LJ,)Z WSW‘,.‘YW‘,_‘*l(ln(t),tﬂ
L) | PUSyP(LA=WSy, yw, (.00, flo. (D)
£ exp () EVI/SY(LI):W/SW;H_YWém (e’ fe ™)

Table 2. Various spreading functions for a given warping
function & (b). Here, Y is defined based on the
domain of & (b).

&b Spreading Function (SF)
l1tol GSF (¢, 8= SF yyw,~ (£, B8

b SFi(r, )= [ K (t+F,t=-F)e *™at
En(d) HSF AL, B =SF y, yw, (£, 0)
§,(b) PSF y* (0)(§,8=SF y, yw, (£, B)
& exp (D) ESFAt,)=SFy, yw, ({5

2.3 Exponential Wey! Symbol and Spreading Function

Using the warping & exp(b)=eb in row 6 of Table 1
and 2, we obtain the exponential WS (EWS) and the
exponential SF (ESF) for Y on L2(R). Two transforms
link EWSY(t,f) and ESFY({,B),

ESF (¢, )= F ! st L E g{ EVS y (8, 72 )}}.

Here, Et—p {x(t)}=/ x(t) e-j2nPe’t et dt. The
exponential version of the quadratic form uses the EWS
and an exponential warped WD [4,10]. Operator output
can be interpreted as a weighted superposition of
exponential frequency shifts on the input signal, 1.e.

(Y= [ [ BSF (¢, B¢ ™™™ x (s

where x{(t)=[et/(et-1)]1/2 x(n(et-1)).

24 Generalized Weyl Symbol and Spreading Function

If a system imposes TF operators different from sim-
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ple time or frequency shifts on the input signal, then
new WS and SF are needed for analysis to reflect the
dispersive changes on the input signal. We obtain the
new generalized WS (GWS) and the new generalized SF
(GSF) of an operator Y representing a system whose
input signal is shifted in frequency in a non-linear
manner related to a one-to-one warping function £ (b).
The new GWS is defined as

GWS v (£, )= [ K AS(E(D, . EED,— D) -

-1
|p(EED, D) EE(D), — ) *e 2isgy, %

where Z(c,{)= & (c+1/2), &€ (& (b))=b, and e(t)= & (1),
Here, KY(t,1) is the kernel of the operator Y defined on
La([a,8]) and [aB] depends on the domain of & (b). The
GWS preserves generalized frequency shifts on a random
process x(t), i.e.

WD = x(De™™* = GUS 5, (t, N = GWS p (¢, f— co(D),

where Ry and Rx are the correlation operators of y(t)
and x(t), respectively.
The new GSF is

GSF (4.8 = [ K (&(c, 0. E(c,— D) -
le(&(c, D) e, — D) ~V2e b, @®)

The integration limits in (7) and (8) are determined by
the range of & (b). The relation between GWSy and
GSFY is

GSF (¢, 8= F! rot{ G gl GBS ¢ (¢, ye(H) }}
where G, — Ax(®)=/ x() ™Y jo)| dt is a
generalized transform dependent on the warping function
& (b). The quadratic form in (3) can now be expressed

in terms of the generalized WS, GWSy,
Jeraxon(ar= | [ Gupa(e, p GWS (2, .

Here, GWDx(t,f) is the generalized warped version of
the WD [10] that depends on & (b). This generalized
form of the quadratic form may be useful in detection
applications of systems with arbitrary instantaneous
frequency characteristics.

The operator output can now be interpreted as a
weighted superposition of dispersive frequency shifts on
the input

(Yo = [ [ GSFy(&,Be ™D, T x(Ddedg

where (Dpx)(©)=¢™* x(t) is the generalized frequ-

ency shifted signal, and §,= W ! e S, We is a gene-
ralized warped time-shift operator which can be further
simplified depending on the specific warping function, & (b).
Depending on the choice of £ (b), all the WS and SF
in Section 2 and Tables 1 and 2 are special cases of the
GWS in (7) and GSF in (8). For example, the GWS and
GSF in rows 2 in Table 1 and 2 simplify to the
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conventional WS examples in rows 2 when & (b)=b.

3. Application Examples

3.1 Analysis problem

In order to demonstrate the importance of the new
generalized WS, we analyze a hyperbolic random process
x(t)=2a; xi(t). Here, @ are uncorrelated, zero-mean ran-
dom weights and xi(t)=e>""" >0, i=1,2,3, are hyper-
bolic FM, deterministic signals. Note that each signal
term xi(t) has hyperbolic instantaneous frequency, ci/t.
One can show that the hyperbolic WS in (5) of the
correlation operator Rx with kernel Kgx(t, T)=E[x(t)x (1)]

simplifies to
HWS g (8, N = 2ZEla } 16(f~c /8,60 9

where Ele] is the expectation operator. Figure 1
shows the contour plots of (a) the conventional WS
versus (b) the HWS of R« of a windowed x(t). Both
show time-varying transfer functions with hyperbolic
TF characteristics. The advantage of the HWS in (9), is
that it is ideally localized along the three instantaneous
frequency curves f=c/t in the TF plane. The disa-
dvantage of the conventional WS is that it produces
spurious components along hyperbolae since it does not
match the intrinsic hyperbolic TF characteristics.

Fig 1. (a) Weyl symbol, WSRx(t, f), and (b) hyperbolic
Weyl symbol, HWSg(t, ), of a windowed
hyperbolic process x(t). The horizontal axis for
time and the vertical for normalized frequency.

3.2 Detection problem

Next, we consider the detection of a known deter-
ministic signal s(t) with hyperbolic TF characteristics in
nonstationary Gaussian random noise n(t). Assume that
the noise has the correlation function Rn(t,T) whose
support region area 1s less than unity in the hyperbolic
SF domain. Here, the support region of a hyperbolic SF,
HSFra(3,B), of the noise process n(t) is the region in (T,
B) where HSFRn({,B)=0. The test statistic of the
optimal likelihood ratio detector is Re{<R.'x, s>} where
R. is the correlation operator and x(t) is the received
signal. The inner product is defined as <xy>=/[
x(t)y"(t)dt and Re{a} is the real part of a.

Using the hyperbolic version of the quadratic form,
one obtains

Linear Time-Varying Systems

RACR, 'z, 91= [ [ HWS g-(£, ) Rel Q. (t, Hldrdf

where Qus(tf) is the cross Q-distribution of x(t) and
s(t). Similar to the conventional underspread operator
approximations in [6,7], we show that if the hyperbolic
SFs of two operators Y and S are confined in a small
area (jointly underspread), then the hyperbolic WS of the
composite operator YS can be approximated as the
product of the hyperbolic WS of each operator [4], i.e.

HWS ys(t, N~ HWS v(t, /) HWS s(t, 0.

For the two correlation operators R, and gr.i1, we
show that

[{VI/SRan/I(t’f)z H%Rn(t,ﬂ H%Rn—l(t,f)xl_

This simplifies the TF test statistic for detecting a
deterministic signal [7]

RA<R, 'x,51~ [ [Rel Q.(t,))/ HVS g, (¢, /) dld.

4. Conclusions

The conventional WS and SF are most useful for
systems producing constant time shifts and frequency
shifts on the signal. The WS are time-frequency
representations that can be interpreted as time-varying
spectra for random processes, In this paper, using war-
ping techniques, we generalized the conventional
narrowband WS and SF to new WS and SF better
matched to dispersive systems. For example, we defined
the hyperbolic WS and SF matched to hyperbolic
frequency shifts and scale changes, the power WS and
SF matched to power law frequency shifts, and the
exponential WS and SF matched to exponential
frequency shifts. We presented specialized forms of the
new WS, SF, and corresponding quadratic forms. We
also provided application examples in analysis and
detection to demonstrate the advantages of our new
results.
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