• Title/Summary/Keyword: Time Step Size

Search Result 575, Processing Time 0.027 seconds

Error Estimation and Adaptive Time Stepping Procedure for Structural Dynamics (구조동역학에서의 오차 추정과 시간간격 제어 알고리즘)

  • 장인식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.190-200
    • /
    • 1996
  • Step-by-step time integration methods are widely used for solving structural dynamics problem. One difficult yet critical choice an analyst must make is to decide an appropriate time step size. The choice of time step size has a significant effect on solution accuracy and computational expense. The objective of this research is to derive error estimate for newly developed time integration method and develop automatic time step size control algorithm for structural dynamics. A formula for computing error tolerance is derived based on desired period resolution. An automatic time step size control strategy is proposed based on a normalized local error estimate for the generalized-α method. Numerical examples demonstrate the developed strategy satisfies general design criteria for time step size control algorithm for dynamic problem.

  • PDF

An algebraic step size least mean fourth algorithm for acoustic communication channel estimation (음향 통신 채널 추정기를 이용한 대수학적 스텝크기 least mean fourth 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • The least-mean fourth (LMF) algorithm is well known for its fast convergence and low steady-state error especially in non-Gaussian noise environments. Recently, there has been increasing interest in the least mean square (LMS) algorithms with variable step size. It is because the variable step-size LMS algorithms have shown to outperform the conventional fixed step-size LMS in the various situations. In this paper, a variable step-size LMF algorithm is proposed, which adopts an algebraic optimal step size as a variable step size. It is expected that the proposed algorithm also outperforms the conventional fixed step-size LMF. The superiority of the proposed algorithm is confirmed by the simulations in the time invariant and time variant channels.

Adaptive Step-size Algorithm for the AIC in the Space-time Coded DS-CDMA System (시공간부호화된 DS-CDMA 시스템에서 적응스텝크기 알고리듬을 적용한 간섭제거수신기)

  • Yi, Joo-Hyun;Lee, Jae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.265-268
    • /
    • 2004
  • In this paper. we propose an adaptive step-size algorithm for the adaptive interference canceller (AIC) in the space-time trellis coded DS-CDMA system. In the AIC, the performance of the blind LMS algorithms that updates the tap-weight vector of the AIC is heavily dependent on the choice of step-size. To improve the performance of the fixed step-size AIC (FS-AIC), the regular adaptive step-size algorithm is extended in complex domain and applied to the joint AIC and ML decoder scheme. Simulation results show that the joint adaptive step-size AIC (AS-AIC) and ML decoder scheme using the proposed algorithm has boner performance than not only the conventional ML decoder but also the joint FS-AIC and ML decoder scheme without much increase of the decoding delay and complexity.

  • PDF

A Performance Evaluation of FC-MMA Adaptive Equalization Algorithm by Step Size (스텝 크기에 의한 FC-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.27-32
    • /
    • 2021
  • This paper evaluates the equalization performance of FC-MMA adaptive equalization algorithm by the fixed step size that is used for the minimization of the intersymbol interference which occurs in the time dispersive communication channel. The FC-MMA has a fast convergence speed in order to adapts the new environment more rapidly in case of the time varying charateristics and the abnormal situation like as outage of the communication channel. But the algorithms operates in adative method, convegence speed is depend on fixed step size for adaptation. For this situation, its performance was evaluated by changing the step size value, the residual isi and maximum distortion and MSE performance index which means the convergence characteristics are widely adapted in the adaptive equalizer, SER were applied. As a result of computer simulation, the large step size can improves the convergence speed for reaching the steady state, but has a poor performance compared to small step size in residual values after steady state. The research result shows that the FC-MMA algorithm is applied the large step size for rapidly reaching the steady state in initial time, then adjust the small step size after reaching the steady state for reducing the residual values for equalization.

High fidelity transient solver in STREAM based on multigroup coarse-mesh finite difference method

  • Anisur Rahman;Hyun Chul Lee;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3301-3312
    • /
    • 2023
  • This study incorporates a high-fidelity transient analysis solver based on multigroup CMFD in the MOC code STREAM. Transport modeling with heterogeneous geometries of the reactor core increases computational cost in terms of memory and time, whereas the multigroup CMFD reduces the computational cost. The reactor condition does not change at every time step, which is a vital point for the utilization of CMFD. CMFD correction factors are updated from the transport solution whenever the reactor core condition changes, and the simulation continues until the end. The transport solution is adjusted once CMFD achieves the solution. The flux-weighted method is used for rod decusping to update the partially inserted control rod cell material, which maintains the solution's stability. A smaller time-step size is needed to obtain an accurate solution, which increases the computational cost. The adaptive step-size control algorithm is robust for controlling the time step size. This algorithm is based on local errors and has the potential capability to accept or reject the solution. Several numerical problems are selected to analyze the performance and numerical accuracy of parallel computing, rod decusping, and adaptive time step control. Lastly, a typical pressurized LWR was chosen to study the rod-ejection accident.

An acoustic channel estimation using least mean fourth with an average gradient vector and a self-adjusted step size (기울기 평균 벡터를 사용한 가변 스텝 최소 평균 사승을 사용한 음향 채널 추정기)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.3
    • /
    • pp.156-162
    • /
    • 2018
  • The LMF (Least Mean Fourth) algorithm is well known for its fast convergence and low steady-state error especially in non-Gaussian noise environments. Recently, there has been increasing interest in the LMS (Least Mean Square) algorithms with self-adjusted step size. It is because the self-adjusted step-size LMS algorithms have shown to outperform the conventional fixed step-size LMS in the various situations. In this paper, a self-adjusted step-size LMF algorithm is proposed, which adopts an averaged gradient based step size as a self-adjusted step size. It is expected that the proposed algorithm also outperforms the conventional fixed step-size LMF. The superiority of the proposed algorithm is confirmed by the simulations in the time invariant and time variant channels.

Development of a Dedicated Model for a Real-Time Simulation of the Pressurizer Relief Tank of the Westinghouse Type Nuclear Power Plant (웨스팅하우스형 원자력발전소 가압기 방출 탱크의 실시간 시뮬레이션을 위한 전문모델 개발)

  • 서재승;전규동
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.13-21
    • /
    • 2004
  • The thermal-hydraulic model ARTS which was based on the RETRAN-3D code adopted in the domestic full-scope power plant simulator which was provided in 1998 by KEPRI. Since ARTS is a generalized code to model the components with control volumes, the smaller time-step size should be used even if converged solution could not get in a single volume. Therefore, dedicated models which do not force to reduce the time-step size are sometimes more suitable in terms of a real-time calculation and robustness. In the case of PRT(Pressurizer Relief Tank) model, it is consist of subcooled water in bottom and non-condensable gas in top. The sparger merged under subcooled water enhances condensation. The complicated thermal-hydraulic phenomena such as condensation, phase separation with existence of non-condensable gas makes difficult to simulate. Therefore, the PRT volume can limit the time-step size if we model it with a general control volume. To prevent the time-step size reduction due to convergence failure for simulating this component, we developed a dedicated model for PRT. The dedicated model was expected to provide substantially more accurate predictions in the analysis of the system transients. The results were resonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with the ANSI/ANS-3.5-1998 simulator software performance criteria and RETRAN-3D results.

  • PDF

CNC Tool Path Planning for Free-Form Sculptured Surface with a New Tool Path Interval Algorithm (새로운 공구경로간격 알고리듬을 이용한 자유곡면에서의 CNC 공구경로 계획)

  • Lee, Sung-Gun;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.43-49
    • /
    • 2001
  • A reduced machining time and increased accuracy for the sculptured surface are very important when producing complicated parts. The step-size and tool-path interval are essential components in high speed and high resolution machining. If they are small, the machining time will increase, whereas if they are large, rough surfaces will be caused. In particular, the machining time, which is key in high speed machining, is affected by the tool-path interval more than the step-size. The conventional method for calculating the tool=path interval is to select a small parametric increment of a small increment based on the curvature of the surface. However, this approach also has limitations. The first is that the tool-path interval can not be calculated precisely. The second is that a separate tool-path interval needs to be calculated in each of the three cases. The third is that the conversion from Cartesian domain to parametric domain or vice versa must be necessary. Accordingly, the current study proposes a new tool-path interval algorithm that do not involve a curvature and that is not necessary for any conversion and a variable step-size algorithm for NURBS.

  • PDF

Simulation of Sediment Deposition Behavior in a Reservoir using a SED2D model: Focusing on Sensitivity of Simulation Time Step (SED2D모형을 이용한 저수지 퇴사거동 모의-모의시간간격의 민감도를 중심으로)

  • Kim, Dae Guen
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • In this study, the following conclusions were obtained from an investigation of the effect of the simulation time step on the simulation results of the two-dimensional, vertically averaged sediment transport model SED2D and an analysis of the deposited sediment distribution in suspended sediments of reservoirs according to grain size. The simulation time step has a significant effect on the deposited sediment distribution in a reservoir. In particular, if the simulation time step is set to be excessively large, physically invalid results are obtained. Additionally, in order to determine an appropriate simulation time step for SED2D, the selection of a simulation time step that will allow the analysis of the suspended sediment concentration profile at the main points of the simulation domain is necessary. The deposited sediment distribution in a reservoir according to grain size, including suspended sediments of clay, silt, and sand, was successfully simulated. Such information will prove valuable in application to the establishment of efficient management and reduction measures of reservoir sediment deposits.

Stability and accuracy for the trapezoidal rule of the Newmark time integration method with variable time step sizes (가변시간간격을 갖는 Newmark 시간적분법의 사다리꼴법칙에 대한 안정성과 정확도)

  • Noh, Yong-Su;Chung, Jin-Tae;Bae, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1712-1717
    • /
    • 1997
  • Stability and accuracy for the trapezoidal rule of the Newmark time integration method are analyzed when variable time step sizes are adopted. A new analytic approach to stability and accuracy analysis is also proposed for time integration methods with variable time step sizes. The trapezoidal rule with variable time step sizes has the "actual" unconditional stability which is the same as that of the method with constant time step sizes. However, the method with variable time step sizes is first-order accurate while the method with constant time step sizes is second-order accurate. accurate.