• 제목/요약/키워드: Time Series models

검색결과 1,064건 처리시간 0.03초

양파와 마늘가격 예측모형의 예측력 고도화 방안 (Improving Forecasting Performance for Onion and Garlic Prices)

  • 하지희;서상택;김선웅
    • 농촌계획
    • /
    • 제25권4호
    • /
    • pp.109-117
    • /
    • 2019
  • The purpose of this study is to present a time series model of onion and garlic prices. After considering the various time series models, we calculated the appropriate time series models for each item and then selected the model with the minimized error rate by reflecting the monthly dummy variables and import data. Also, we examined whether the predictive power improves when we combine the predictions of the Korea Rural Economic Institute with the predictions of time series models. As a result, onion prices were identified as ARMGARCH and garlic prices as ARXM. Monthly dummy variables were statistically significant for onion in May and garlic in June. Garlic imports were statistically significant as a result of adding imports as exogenous variables. This study is expected to help improve the forecasting model by suggesting a method to minimize the price forecasting error rate in the case of the unstable supply and demand of onion and garlic.

A Time Series-Based Statistical Approach for Trade Turnover Forecasting and Assessing: Evidence from China and Russia

  • DING, Xiao Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권4호
    • /
    • pp.83-92
    • /
    • 2022
  • Due to the uncertainty in the order of the integrated model, the SARIMA-LSTM model, SARIMA-SVR model, LSTM-SARIMA model, and SVR-SARIMA model are constructed respectively to determine the best-combined model for forecasting the China-Russia trade turnover. Meanwhile, the effect of the order of the combined models on the prediction results is analyzed. Using indicators such as MAPE and RMSE, we compare and evaluate the predictive effects of different models. The results show that the SARIMA-LSTM model combines the SARIMA model's short-term forecasting advantage with the LSTM model's long-term forecasting advantage, which has the highest forecast accuracy of all models and can accurately predict the trend of China-Russia trade turnover in the post-epidemic period. Furthermore, the SARIMA - LSTM model has a higher forecast accuracy than the LSTM-ARIMA model. Nevertheless, the SARIMA-SVR model's forecast accuracy is lower than the SVR-SARIMA model's. As a result, the combined models' order has no bearing on the predicting outcomes for the China-Russia trade turnover time series.

단변량 시계열 모형들의 단순 결합의 예측 성능 (Performance for simple combinations of univariate forecasting models)

  • 이선홍;성병찬
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.385-393
    • /
    • 2022
  • 본 논문에서는 시계열 예측 분야에서 잘 알려져 있는 단변량 시계열 모형들을 이용하여, 그들의 단순 조합이 어떤 예측력을 보여주는지 연구한다. 고려된 단변량 시계열 모형으로는, 지수평활 및 ARIMA(autoregressive integrated moving average) 모형들과 그들의 확장된 형태인 모형들 그리고 예측의 벤치마크 모형으로 자주 사용되는 비계절 및 계절 랜덤워크 모형이다. 단순 조합의 방법은 중앙값과 평균을 이용하였으며, 검증을 위하여 사용된 데이터셋은 3,003개의 시계열 자료로 구성된 M3-competition 자료이다. 예측 성능을 sMAPE(symmetric mean absolute percentage error)와 MASE(mean absolute scaled error)로 평가한 결과, 단변량 시계열 모형들의 단순 조합이 아주 우수한 예측력을 가지고 있음을 확인하였다.

건설투자(建設投資)의 단기예측모형(短期豫測模型) 비교(比較) (Short-term Construction Investment Forecasting Model in Korea)

  • 김관영;이창수
    • KDI Journal of Economic Policy
    • /
    • 제14권1호
    • /
    • pp.121-145
    • /
    • 1992
  • 본고(本稿)에서는 현재의 경제상황을 잘 반영하는 건설투자활동(建設投資活動)의 단기예측모형(短期豫測模型)을 정립하고자 먼저 관련 시계열자료의 안정성(安定性) 여부(與否)와 순환성(循環性), 계절성(季節性)의 특성을 살펴본 후 여러 단기모형의 예측력(豫測力), 정합성(整合性), 설명력(說明力)을 비교 검토했다. 단위근(單位根) 검정(檢定)과 자기상관계수(自己相關係數) 스펙트랄 밀도함수 분석의 결과, 건설관련 시계열자료들이 대체로 단위근(單位根)을 갖지 않음으로써 안정적이고 주기적인 순환변동을 하고 있으며, 시차변수의 설명력이 높은 특성을 나타내었다. 또한 건설투자자료의 특성이 선행지표(先行指標)인 건축허가연면적(建築許可延面積) 및 건설수주액(建設受注額)과 아주 유사하여 건설투자 단기예측에 있어서 두 지표 사이의 시차관계(時差關係) 파악이 중요함을 알 수 있었다. 제(第)III장(章)에서는 단변량(單變量) 시계열모형(時系列模型)으로 ARIMA모형(模型)과 승법선형추세예측모형(乘法線型趨勢豫測模型)을, 다변량(多變量) 시계열모형(時系列模型)으로는 첫째, 선행지표(先行指標)를 이용한 1차자기회귀모형(次自己回歸模型), VAR모형(模型), 둘째 GNP자료를 이용한 거시경제모형의 단순한 축약형모형(縮約型模型)과 VAR모형(模型)을 제시하고 이들을 비교 평가하였다. 이에 따르면 단변량 시계열모형보다는 다변량 시계열모형이 시간이 경과할수록 예측오차(豫測誤差)가 커지지 않는다는 점에서 우수한 것으로 나타났으며, 다변량모형 중에서도 벡터자기회귀모형이 여타 모형보다 절대예측오차평균(絶對豫測誤差平均), 평균자승근(平均自乘根) 퍼센트 오차(誤差), 결정계수(決定係數) 등 모든 면에서 우수한 것으로 평가되었다. 이는 최근 건설투자가 추세에서 벗어난 급증세를 지속하고 있음을 고려할 때 타당한 결론이라 생각된다.

  • PDF

Forecasting Chinese Yuan/USD Via Combination Techniques During COVID-19

  • ASADULLAH, Muhammad;UDDIN, Imam;QAYYUM, Arsalan;AYUBI, Sharique;SABRI, Rabia
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권5호
    • /
    • pp.221-229
    • /
    • 2021
  • This study aims to forecast the exchange rate of the Chinese Yuan against the US Dollar by a combination of different models as proposed by Poon and Granger (2003) during the Covid-19 pandemic. For this purpose, we include three uni-variate time series models, i.e., ARIMA, Naïve, Exponential smoothing, and one multivariate model, i.e., NARDL. This is the first of its kind endeavor to combine univariate models along with NARDL to the best of our knowledge. Utilizing monthly data from January 2011 to December 2020, we predict the Chinese Yuan against the US dollar by two combination criteria i.e. var-cor and equal weightage. After finding out the individual accuracy, the models are then assessed through equal weightage and var-cor methods. Our results suggest that Naïve outperforms all individual & combination of time series models. Similarly, the combination of NARDL and Naïve model again outperformed all of the individual as well as combined models except the Naïve model, with the lowest MAPE value of 0764. The results suggesting that the Chinese Yuan exchange rate against the US Dollar is dependent upon the recent observations of the time series. Further evidence shows that the combination of models plays a vital role in forecasting which commensurate with the literature.

Forecasting Exchange Rates: An Empirical Application to Pakistani Rupee

  • ASADULLAH, Muhammad;BASHIR, Adnan;ALEEMI, Abdur Rahman
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권4호
    • /
    • pp.339-347
    • /
    • 2021
  • This study aims to forecast the exchange rate by a combination of different models as proposed by Poon and Granger (2003). For this purpose, we include three univariate time series models, i.e., ARIMA, Naïve, Exponential smoothing, and one multivariate model, i.e., NARDL. This is the first of its kind endeavor to combine univariate models along with NARDL to the best of our knowledge. Utilizing monthly data from January 2011 to December 2020, we predict the Pakistani Rupee against the US dollar by a combination of different forecasting techniques. The observations from M1 2020 to M12 2020 are held back for in-sample forecasting. The models are then assessed through equal weightage and var-cor methods. Our results suggest that NARDL outperforms all individual time series models in terms of forecasting the exchange rate. Similarly, the combination of NARDL and Naïve model again outperformed all of the individual as well as combined models with the lowest MAPE value of 0.612 suggesting that the Pakistani Rupee exchange rate against the US Dollar is dependent upon the macro-economic fundamentals and recent observations of the time series. Further evidence shows that the combination of models plays a vital role in forecasting, as stated by Poon and Granger (2003).

Volatility for High Frequency Time Series Toward fGARCH(1,1) as a Functional Model

  • Hwang, Sun Young;Yoon, Jae Eun
    • Quantitative Bio-Science
    • /
    • 제37권2호
    • /
    • pp.73-79
    • /
    • 2018
  • As high frequency (HF, for short) time series is now prevalent in the presence of real time big data, volatility computations based on traditional ARCH/GARCH models need to be further developed to suit the high frequency characteristics. This article reviews realized volatilities (RV) and multivariate GARCH (MGARCH) to deal with high frequency volatility computations. As a (functional) infinite dimensional models, the fARCH and fGARCH are introduced to accommodate ultra high frequency (UHF) volatilities. The fARCH and fGARCH models are developed in the recent literature by Hormann et al. [1] and Aue et al. [2], respectively, and our discussions are mainly based on these two key articles. Real data applications to domestic UHF financial time series are illustrated.

Modeling Extreme Values of Ground-Level Ozone Based on Threshold Methods for Markov Chains

  • Seokhoon Yun
    • Communications for Statistical Applications and Methods
    • /
    • 제3권2호
    • /
    • pp.249-273
    • /
    • 1996
  • This paper reviews and develops several statistical models for extreme values, based on threshold methodology. Extreme values of a time series are modeled in terms of tails which are defined as truncated forms of original variables, and Markov property is imposed on the tails. Tails of the generalized extreme value distribution and a multivariate extreme value distributively, of the tails of the series. These models are then applied to real ozone data series collected in the Chicago area. A major concern is given to detecting any possible trend in the extreme values.

  • PDF

Generating Complicated Models for Time Series Using Genetic Programming

  • Yoshihara, Ikuo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.146.4-146
    • /
    • 2001
  • Various methods have been proposed for the time series prediction. Most of the conventional methods only optimize parameters of mathematical models, but to construct an appropriate functional form of the model is more difficult in the first place. We employ the Genetic Programming (GP) to construct the functional form of prediction models. Our method is distinguished because the model parameters are optimized by using Back-Propagation (BP)-like method and the prediction model includes discontinuous functions, such as if and max, as node functions for describing complicated phenomena. The above-mentioned functions are non-differentiable, but the BP method requires derivative. To solve this problem, we develop ...

  • PDF

Efficient Quasi-likelihood Estimation for Nonlinear Time Series Models and Its Application

  • Kim, Sahmyeong;Cha, Kyungyup;Lee, Sungduck
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.101-113
    • /
    • 2003
  • Quasi likelihood estimators defined by Wedderburn are derived for several nonlinear time series models. And also, the least squared estimator and Quasi-likelihood estimator are compared in sense of asymptotic relative efficiency at those models. Finally, we apply these estimations to a real data on exchanging rate and stock market prices.