• 제목/요약/키워드: Time Series models

검색결과 1,064건 처리시간 0.036초

Forecast of Korea Defense Expenditures based on Time Series Models

  • Park, Kyung Ok;Jung, Hye-Young
    • Communications for Statistical Applications and Methods
    • /
    • 제22권1호
    • /
    • pp.31-40
    • /
    • 2015
  • This study proposes a mathematical model that can forecast national defense expenditures. The ongoing European debt crisis weighs heavily on markets; consequently, government spending in many countries will be constrained. However, a forecasting model to predict military spending is acutely needed for South Korea because security threats still exist and the estimation of military spending at a reasonable level is closely related to economic growth. This study establishes two models: an Auto-Regressive Moving Average model (ARIMA) based on past military expenditures and Transfer Function model with the Gross Domestic Product (GDP), exchange rate and consumer price index as input time series. The proposed models use defense spending data as of 2012 to create defense expenditure forecasts up to 2025.

PREDICTION MEAN SQUARED ERROR OF THE POISSON INAR(1) PROCESS WITH ESTIMATED PARAMETERS

  • Kim Hee-Young;Park You-Sung
    • Journal of the Korean Statistical Society
    • /
    • 제35권1호
    • /
    • pp.37-47
    • /
    • 2006
  • Recently, as a result of the growing interest in modeling stationary processes with discrete marginal distributions, several models for integer valued time series have been proposed in the literature. One of these models is the integer-valued autoregressive (INAR) models. However, when modeling with integer-valued autoregressive processes, the distributional properties of forecasts have been not yet discovered due to the difficulty in handling the Steutal Van Ham thinning operator 'o' (Steutal and van Ham, 1979). In this study, we derive the mean squared error of h-step-ahead prediction from a Poisson INAR(1) process, reflecting the effect of the variability of parameter estimates in the prediction mean squared error.

비선형 분리모형에 의한 증발접시 증발량의 해석 (Pan Evaporation Analysis using Nonlinear Disaggregation Model)

  • 김성원;김정헌;박기범
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1147-1150
    • /
    • 2008
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of the support vector machines neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The SVM-NNM in time series modeling is relatively new and it is more problematic in comparison with classifications. In this study, The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

붓스트랩을 이용한 비선형 시계열 모형의 예측구간 (Prediction Intervals for Nonlinear Time Series Models Using the Bootstrap Method)

  • 이성덕;김주성
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.219-228
    • /
    • 2004
  • 오차항의 분포가 정규분포에 따르지 않는 비선형 시계열인 ARCH모형의 예측구간을 설정하는데 붓스트랩 방법과 근사적 방법간의 포함비율에 대한 정확성을 비교한다. 이 때 모형에서 모수를 추정하는 방법으로서는 분포에 대한 가정을 필요로 하지 않는 quasi-score 추정함수를 이용한 추정 법과 로버스트 추정 함수인 M quasi-score 추정 함수를 이용한 추정법을 사용한다. 추정된 모수를 이용하여 예측구간의 정확성을 비교하고 마지막으로 소비자 물가지수 자료를 이용하여 실제 예측구간을 구하는데 적용한다.

종속 오차에 대한 분포 변화 검정법 (Test for Distribution Change of Dependent Errors)

  • 나성룡
    • Communications for Statistical Applications and Methods
    • /
    • 제16권4호
    • /
    • pp.587-594
    • /
    • 2009
  • 이 논문에서는 선형회귀모형의 오차항에 대한 변화점 검정 문제를 다룬다. 고정 혹은 변동 모형의 독립 변수와 약한 종속성을 가지는 오차항을 가정하는 관계로 통상적인 중회귀모형뿐만 아니라 ARMA 등의 시계열 모형까지 본 논문에서 포괄한다고 하겠다. 오차항의 분포 변화를 검정하기 위하여 회귀모형의 잔차에 기초한 확률밀도함수 추정값을 이용한다. 적절한 가정하에서 잔차를 이용한 검정이 실제 오차를 이용한 경우와 동일한 극한 분포를 가짐을 보였다.

Forecasting interval for the INAR(p) process using sieve bootstrap

  • Kim, Hee-Young;Park, You-Sung
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.159-165
    • /
    • 2005
  • Recently, as a result of the growing interest in modelling stationary processes with discrete marginal distributions, several models for integer valued time series have been proposed in the literature. One of theses models is the integer-valued autoregressive(INAR) models. However, when modelling with integer-valued autoregressive processes, there is not yet distributional properties of forecasts, since INAR process contain an accrued level of complexity in using the Steutal and Van Harn(1979) thinning operator 'o'. In this study, a manageable expression for the asymptotic mean square error of predicting more than one-step ahead from an estimated poisson INAR(1) model is derived. And, we present a bootstrap methods developed for the calculation of forecast interval limits of INAR(p) model. Extensive finite sample Monte Carlo experiments are carried out to compare the performance of the several bootstrap procedures.

  • PDF

단변량 시계열모형을 이용한 식음료 수요예측에 관한 연구 - 서울소재 특1급 H호텔 사례를 중심으로 - (Forecasting Demand for Food & Beverage by Using Univariate Time Series Models: - Whit a focus on hotel H in Seoul -)

  • 김석출;최수근
    • 한국조리학회지
    • /
    • 제5권1호
    • /
    • pp.89-101
    • /
    • 1999
  • This study attempts to identify the most accurate quantitative forecasting technique for measuring the future level of demand for food & beverage in super deluxe hotel in Seoul, which will subsequently lead to determining the optimal level of purchasing food & beverage. This study, in detail, examines the food purchasing system of H hotel, reviews three rigorous univariate time series models and identify the most accurate forecasting technique. The monthly data ranging from January 1990 to December 1997 (96 observations) were used for the empirical analysis and the 1998 data were left for the comparison with the ex post forecast results. In order to measure the accuracy, MAPE, MAD and RMSE were used as criteria. In this study, Box-Jenkins model was turned out to be the most accurate technique for forecasting hotel food & beverage demand among selected models generating 3.8% forecast error in average.

  • PDF

추계학적 신경망 접근법을 이용한 수문학적 시계열의 모형화 (Modeling of Hydrologic Time Series using Stochastic Neural Networks Approach)

  • 김성원;김정헌;박기범
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1346-1349
    • /
    • 2010
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

시계열 모형을 이용한 일별 최대 전력 수요 예측 연구 (Daily Peak Load Forecasting for Electricity Demand by Time series Models)

  • 이정순;손흥구;김삼용
    • 응용통계연구
    • /
    • 제26권2호
    • /
    • pp.349-360
    • /
    • 2013
  • 최근 일별 최대 전력수요 예측은 전력설비 계획 및 운용에 매우 중요한 사안으로 주목받고 있다. 본 연구는 일별 최대 전력수요 예측을 위하여 대표적 시계열 모형을 소개하고, 예측의 성능 비교를 위하여 RMSE(Root mean squared error)와 MAPE(Mean absolute percentage error)를 사용한다. 연구결과로 보완된 Holt-Winters 모형과 Reg-ARIMA 모형이 다른 모형에 비하여 우수한 예측 성능을 보였다.

하천유량의 추계학적 모의발생에 관한 연구(I) -하천유량의 Simulation 모델에 대하여- (Studies on the Stochastic Generation of Synthetic Streamflow Sequences(I) -On the Simulation Models of Streamflow-)

  • 이순탁
    • 물과 미래
    • /
    • 제7권1호
    • /
    • pp.71-77
    • /
    • 1974
  • This paper reviews several different single site generation models for further development of a model for generating the Synthetic sequences of streamflow in the continuous streams like main streams in Korea. Initially the historical time series is looked using a time series technique, that is correlograms, to determine whether a lag one Markov model will satisfactorily represent the historical data. The single site models which were examined include an empirical model using the historical probability distribution of the random component, the linear autoregressive model(Markov model, or Thomas-Fiering model) using both logarithms of the data and Matala's log-normal transformation equations, and finally gamma distribution model.

  • PDF