The purpose of this study is to provide the ideal forecasting model of cadastral survey work load through the Economeatric Analysis of Time Series, Granger Causality and VAR Model Analysis, it suggested the forecasting reference materials for the total amount of cadastral survey general work load. The main result is that the derive of the environment variables which affect cadastral survey general work load and the outcome of VAR(vector auto regression) analysis materials(impulse response function and forecast error variance decomposition analysis materials), which explain the change of general work load depending on altering the environment variables. And also, For confirming the stability of time series data, we took a unit root test, ADF(Augmented Dickey-Fuller) analysis and the time series model analysis derives the best cadastral forecasting model regarding on general cadastral survey work load. And also, it showed up the various standards that are applied the statistical method of econometric analysis so it enhanced the prior aggregate system of cadastral survey work load forecasting.
An integrated method is proposed for structural nonlinear damage detection based on time series analysis and the higher statistical moments of structural responses in this study. It combines the time series analysis, the higher statistical moments of AR model residual errors and the fuzzy c-means (FCM) clustering techniques. A few comprehensive damage indexes are developed in the arithmetic and geometric mean of the higher statistical moments, and are classified by using the FCM clustering method to achieve nonlinear damage detection. A series of the measured response data, downloaded from the web site of the Los Alamos National Laboratory (LANL) USA, from a three-storey building structure considering the environmental variety as well as different nonlinear damage cases, are analyzed and used to assess the performance of the new nonlinear damage detection method. The effectiveness and robustness of the new proposed method are finally analyzed and concluded.
센서 데이터를 활용하여 설비의 이상 진단이 가능해졌다. 하지만 설비 이상에 대한 원인 분석은 미비한 실정이다. 본 연구에서는 센서 기반 시계열 데이터 분류 모델을 위한 해석가능한 합성곱 신경망 프레임워크를 제안한다. 연구에서 사용된 센서 기반 시계열 데이터는 실제 차량에 부착된 센서를 통해 수집되었고, 반도체의 웨이퍼 데이터는 공정 과정에서 수집되었다. 추가로 실제 기계 설비에서 수집된 주기 신호 데이터를 이용 하였으며, 충분한 학습을 위해 Data augmentation 방법론인 Scaling과 Jittering을 적용하였다. 또한, 본 연구에서는 3가지 합성곱 신경망 기반 모델들을 제안하고 각각의 성능을 비교하였다. 본 연구에서는 ResNet에 Jittering을 적용한 결과 정확도 95%, F1 점수 95%로 가장 뛰어난 성능을 보였으며, 기존 연구 대비 3%의 성능 향상을 보였다. 더 나아가 결과의 해석을 위한 XAI 방법론으로 Class Activation Map과 Layer Visualization을 제안하였으며, 센서 데이터 분류에 중요 영향을 끼치는 시계열 구간을 시각적으로 확인하였다.
Huang, Mingfeng;Li, Qiang;Xu, Haiwei;Lou, Wenjuan;Lin, Ning
Wind and Structures
/
제26권3호
/
pp.129-146
/
2018
Extreme wind speed analysis has been carried out conventionally by assuming the extreme series data is stationary. However, time-varying trends of the extreme wind speed series could be detected at many surface meteorological stations in China. Two main reasons, exposure change and climate change, were provided to explain the temporal trends of daily maximum wind speed and annual maximum wind speed series data, recorded at Hangzhou (China) meteorological station. After making a correction on wind speed series for time varying exposure, it is necessary to perform non-stationary statistical modeling on the corrected extreme wind speed data series in addition to the classical extreme value analysis. The generalized extreme value (GEV) distribution with time-dependent location and scale parameters was selected as a non-stationary model to describe the corrected extreme wind speed series. The obtained non-stationary extreme value models were then used to estimate the non-stationary extreme wind speed quantiles with various mean recurrence intervals (MRIs) considering changing climate, and compared to the corresponding stationary ones with various MRIs for the Hangzhou area in China. The results indicate that the non-stationary property or dependence of extreme wind speed data should be carefully evaluated and reflected in the determination of design wind speeds.
This paper discusses missing data processing using simple moving average (SMA) and kalman filter. Also SMA and kalman predictive value are made a comparative study. Time series analysis is a generally method to deals with time series data in photovoltaic field. Photovoltaic system records data irregularly whenever the power value changes. Irregularly recorded data must be transferred into a consistent format to get accurate results. Missing data results from the process having same intervals. For the reason, it was imputed using SMA and kalman filter. The kalman filter has better performance to observed data than SMA. SMA graph is stepped line graph and kalman filter graph is a smoothing line graph. MAPE of SMA prediction is 0.00737%, MAPE of kalman prediction is 0.00078%. But time complexity of SMA is O(N) and time complexity of kalman filter is O(D2) about D-dimensional object. Accordingly we suggest that you pick the best way considering computational power.
Groundwater recharge characteristics in a fractured granite area, Mt. Geumjeong, Korea. was interpreted using bedrock groundwater and wet-land water data. Time series analysis using autocorreclation, cross-correlation and spectral density was conducted for characterizing water level variation and recharge rate in low water and high water seasons. Autocorrelation analysis using water levels resulted in short delay time with weak linearity and memory. Cross-correlation function from cross-correlation analysis was lower in the low water season than the high water season for the bedrock groundwater. The result of water level decline analysis identified groundwater recharge rate of about 11% in the study area.
Gait analysis is essential to identify accurate cause and knee condition from patients who display abnormal walking. Traditional linear tools can, however, mask the true structure of motor variability, since biomechanical data from a few strides during the gait have limitation to understanding the system. Therefore, it is necessary to propose a more precise dynamic method. The chaos analysis, a nonlinear technique, focuses on understand how variations in the gait pattern change over time. Eight healthy eight subjects walked on a treadmill for 100 seconds at 60 Hz. Three dimensional walking kinematic data were obtained using two cameras and KWON3D motion analyzer. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. This study quantified the variability present in time series generated from gait parameter via chaos analysis. Knee flexion-extension patterns were found to be chaotic. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.
An economic signal in the real world usually reflects complex phenomena. One may have difficulty both extracting and interpreting information embedded in such a signal. A natural way to reduce complexity is to decompose the original signal into several simple components, and then analyze each component. Spectral analysis (Priestley, 1981) provides a tool to analyze such signals under the assumption that the time series is stationary. However when the signal is subject to non-stationary and nonlinear characteristics such as amplitude and frequency modulation along time scale, spectral analysis is not suitable. Huang et al. (1998b, 1999) proposed a data-adaptive decomposition method called empirical mode decomposition and then applied Hilbert spectral analysis to decomposed signals called intrinsic mode function. Huang et al. (1998b, 1999) named this two step procedure the Hilbert-Huang transform(HHT). Because of its robustness in the presence of nonlinearity and non-stationarity, HHT has been used in various fields. In this paper, we discuss the applications of the HHT and demonstrate its promising potential for non-stationary financial time series data provided through a Korean stock price index.
본 연구에서는 비선형 카오스 계열에 대한 잡음의 영향 분석을 위하여 대표적인 비선형 카오스 특성을 보이는 것으로 알려진 Logistic Map 자료계열을 이용하여 연구를 수행하였다. 잡음을 임의로 추가하여 잡음 수준에 따라 자료계열을 재생성 하였으며 비선형 자료의 분석 방법으로 활용되고 있는 상태공간 재건, 상관차원 추정, BDS 통계, DVS 알고리즘 분석을 실시하였다. 분석 결과 자료계열은 잡음의 수준이 높아짐에 따라 비선형 카오스적 특성을 보이는 원시자료의 특성이 사라지고 무작위한 추계학적 특성을 보이는 자료로 변화하였다. 그리고 잡음의 영향을 받고 있는 자료에 대한 잡음제거 방법으로 Low Pass Filter와 Kalman Filter 기법을 적용하였다. 전통적인 비모수 통계기법은 비선형 무작위 시계열 또는 비선형 시계열을 구분하는데 어려움이 있지만 비선형 통계기법인 BDS 통계는 비선형 시계열을 구분할 수 있는 것으로 알려져 있다. 분석을 수행한 결과 잡음 수준이 높을 경우 Low Pass Filter는 잡음을 효과적으로 제거하지 못하여 비선형 자료를 선형자료로 판정하였지만 Kalman Filter의 경우 잡음을 효과적으로 제거하는 것으로 나타나 적용성이 우수함을 알 수 있었다.
음악 데이타의 양이 급속히 증가함에 따라 음악 데이타베이스의 오디오 특정을 이용한 내용기 반 음악 장르의 효율적인 유사도 검색 방법이 요구되고 있다. 이러한 시스템을 구현하기 위해서는 시계열 패턴인 오디오 특징을 인덱싱 할 수 있는 인덱싱 기법과 데이터마이닝 기술이 필요하다. 본 논문에서는 인덱싱 기법을 기반으로 하는 유사 장르 음악 검색 시스템의 개발에 대하여 논의한다. 먼저, 시계열 패턴 인덱싱 기법과 데이터마이닝을 이용한 내용기반 음악장르 검색 시스템의 구조를 제안한다. 또한, 오디오 특정을 이용한 유사 장르 검색의 성능을 보이기 위하여 시계열 패턴 인덱스 화일을 구축하고 성능 분석 을 제시한다. 실제 데이타의 특정값을 이용한 실험을 통하여 제안한 기법의 성능을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.