DOI QR코드

DOI QR Code

Analysis of Noise Influence on a Chaotic Series and Application of Filtering Techniques

카오스 시계열에 대한 잡음영향 분석과 필터링 기법의 적용

  • 최민호 (경희대학교 토목건축공학부) ;
  • 이은태 (경희대학교 토목건축공학부) ;
  • 김형수 (인하대학교 토목공학과) ;
  • 김수전 (인하대학교 공학대학원 토목공학과)
  • Received : 2010.09.07
  • Accepted : 2010.11.15
  • Published : 2011.02.28

Abstract

We studied noise influence on nonlinear chaotic system by using Logistic data series which is known as a typical nonlinear chaotic system. We regenerated Logistic data series by the method of adding noise according to noise level. And, we performed some analyses such as phase space reconstruction, correlation dimension, BDS statistics, and DVS Algorithms which are known as the methods of nonlinear deterministic or chaotic analysis. If we see the results of analysis, the characteristics of data series are gradually changed from nonlinear chaotic data series to random stochastic data series according to increasing noise level. We applied Low Pass Filter (LPF) and Kalman Filter techniques for the investigation of removing effect of the added noise to data series. Typical nonparametric method cannot distinguish nonlinear random series but the BDS statistic can distinguish the nonlinear randomness of the time series. Therefore this study used the BDS statistic which is well known as nonlinear statistical method for the investigation of randomness of time series for the effect of removing noise of data series. We found that Kalman filter is better method to remove the noise of chaotic data series even for high noise level.

본 연구에서는 비선형 카오스 계열에 대한 잡음의 영향 분석을 위하여 대표적인 비선형 카오스 특성을 보이는 것으로 알려진 Logistic Map 자료계열을 이용하여 연구를 수행하였다. 잡음을 임의로 추가하여 잡음 수준에 따라 자료계열을 재생성 하였으며 비선형 자료의 분석 방법으로 활용되고 있는 상태공간 재건, 상관차원 추정, BDS 통계, DVS 알고리즘 분석을 실시하였다. 분석 결과 자료계열은 잡음의 수준이 높아짐에 따라 비선형 카오스적 특성을 보이는 원시자료의 특성이 사라지고 무작위한 추계학적 특성을 보이는 자료로 변화하였다. 그리고 잡음의 영향을 받고 있는 자료에 대한 잡음제거 방법으로 Low Pass Filter와 Kalman Filter 기법을 적용하였다. 전통적인 비모수 통계기법은 비선형 무작위 시계열 또는 비선형 시계열을 구분하는데 어려움이 있지만 비선형 통계기법인 BDS 통계는 비선형 시계열을 구분할 수 있는 것으로 알려져 있다. 분석을 수행한 결과 잡음 수준이 높을 경우 Low Pass Filter는 잡음을 효과적으로 제거하지 못하여 비선형 자료를 선형자료로 판정하였지만 Kalman Filter의 경우 잡음을 효과적으로 제거하는 것으로 나타나 적용성이 우수함을 알 수 있었다.

Keywords

References

  1. 김형수, 윤용남(1996) 카오스의 위상학적 견지 : (II) 독립성과 잡음제거, 대한토목학회논문집, 대한토목학회, 제16권, 제II-5호, pp. 453-459.
  2. 오창열, 진영훈, 박성천, 정우철(2006) 하천의 일TOC 시계열 자료의 비선형 동역학적 거동 분석, 한국수자원학회 2006년도 학술발표회 논문집, 한국수자원학회, pp. 1032-1036.
  3. 장권희, 김치영, 김수전, 김형수(2009) 자동유량측정 자료의 개선을 위한 필터링 방법의 적용, 한국수자원학회 2009년도 학술발표회 논문집, 한국수자원학회
  4. 장석곤(2002) Kalman Filter를 이용한 충주댐 유입량 예측기법의 결합, 석사학위논문, 서울대학교.
  5. 최민호, 이은태, 김형수(2009) 카오스 시계열에 대한 잡음의 영향, 한국수자원학회논문집, 한국수자원학회, 제42권, 제4호, pp. 355-363.
  6. Abraham, N.B. (1989) Chaotic behavior in systems; Nonlinear theories; Congresses, Plenum Press, Conference Proceedings p. 476.
  7. Bouzata, S., Wioa, H.S., and Mindlin, G.B. (2004) Characterization of spatiotemporal chaos in an inhomogeneous active medium, Physica D, 199, pp. 185-193. https://doi.org/10.1016/j.physd.2004.08.013
  8. Brock, W.A., Heish, D.A., and Lebaron, B. (1991) Nonlinear dynamics, chaos, and instalbility: Statistical theory and economic evidence, The MIT Press.
  9. Brock, W.A., Dechert, W.D., Scheinkman, J.A., and LeBaron, B. (1996) A test for independence based on the correlation dimension, Econ. Rev.
  10. Casdagli, M. (1992) Chaos and deterministic versus stochastic nonlinear modeling, J. Roy. Stat. Soc. B, 54, pp. 303-324.
  11. Gilmore, C.G. (1993) A New Test for chaos, Journal of Economic Behavior and Organization, Vol. 22. pp. 209-237. https://doi.org/10.1016/0167-2681(93)90064-V
  12. Greg, W. and Gary, B. (2001) An Introduction to the Kalman Filter, UNC-Chapel Hill, TR 95-041.
  13. Hense, A. (1987) On the possible existence of a strange attractor for the southern oscillation, Beitr. Phys. Atmosph. Vol. 60, No. 1, pp. 34-47.
  14. Jayawardena, A.W. and Lai, F. (1994) Analysis and prediction of chaos in rainfall and stream flow time series". J. Hydrol. Vol. 153, pp. 23-52. https://doi.org/10.1016/0022-1694(94)90185-6
  15. Kim, H.S. (1997) Applicability of chaotic system in hydrologic time series. Ph.D. Dissertation, Colorado State Univ., Fort Collins, Colorado, USA.
  16. Kim, H.S., Eykholt, R., and Salas, J.D. (1998) Delay time window and plateau onset of the correlation dimension for small data sets, Physical Review E, Vol. 58, No. 5, pp. 5676-5682. https://doi.org/10.1103/PhysRevE.58.5676
  17. Kim, H.S., Eykholt, R., and Salas, J.D. (1999) Nonlinear dynamics, delay times, and embedding windows, Physica D 127, pp. 48-60. https://doi.org/10.1016/S0167-2789(98)00240-1
  18. Kim, H.S., Yoon, Y.N., Kim, J.H., and Kim, J.H. (2001) Searching for strange attractor in wastewater flow, Stochastic Environmental Research and Risk Assessment, Vol. 15, No. 5, pp. 399-413. https://doi.org/10.1007/s004770100078
  19. Kim, H.S., Kang, D.S., and Kim, J.H. (2003) The BDS statistic and residual test", Stochastic Environmental Research and Risk Assessment, Vol. 17, pp. 104-115. https://doi.org/10.1007/s00477-002-0118-0
  20. May, R.M. (1976) Simple mathematical models with very complicated dynamics, Nature 261:459. https://doi.org/10.1038/261459a0
  21. Mindlin, G. and Gilmore, R. (1992) Topological analysis and synthesis of chaotic time series, Physica D 58, pp. 229-242. https://doi.org/10.1016/0167-2789(92)90111-Y
  22. Porporato, A. and Ridolfi, L. (1996) Clues to the existence of deterministic chaos in river flow, Int. J. Mod. Phys. B 10, pp. 1821-1862. https://doi.org/10.1142/S0217979296000830
  23. Porporato, A. and Ridolfi, L. (1997) Nonlinear analysis of river flow time sequences, Water Resour. Res. Vol. 33, No. 6, pp. 1353-1367. https://doi.org/10.1029/96WR03535
  24. Rodriguez-Iturbe, I., Power, B.F.D., Sharifi, M.B., and Georgakakos, K.P. (1989) Chaos in Rainfall, Water resources Research, Vol. 25, No. 7, pp. 1667-1675. https://doi.org/10.1029/WR025i007p01667
  25. Sangoyormi, T.B., Lall, U., and Abarbanel, H.D.I. (1996) Nonlinear dynamics of the Great Salt Lake: dimension estimation, Water Resources Research. Vol. 32, No. 1. pp. 149-159. https://doi.org/10.1029/95WR02872
  26. Schreiber, T. (1993) Extremely simple nonlinear noise-reduction method, Phys. Rev. E 47, pp. 2401-2404. https://doi.org/10.1103/PhysRevE.47.2401
  27. Sharifi, M.B., Georgakakos, K.P., and Rodriguez-Iturbe, I. (1990) Evidence of deterministic chaos in the pulse of storm rainfall. J. Atmos. Sci. 47, pp. 888-893. https://doi.org/10.1175/1520-0469(1990)047<0888:EODCIT>2.0.CO;2
  28. Sivakumar, B., Liong, S.Y., and Liaw, C.Y. (1996) Analysis of Singapore rainfall characteristics: Chaos. In: Proceedings of the Tenth Congress of the Asian and Pacific Division of the International Association for Hydraulic Research, Langkawi, Malaysia.
  29. Sivakumar, B., Liong, S.Y., and Liaw, C.Y. (1998). Evidence of chaotic behavior in Singapore rainfall. J. Am. Water Resour. Assoc. Vol. 34, No. 2, pp. 301-310. https://doi.org/10.1111/j.1752-1688.1998.tb04136.x
  30. Sivakumar, B., Liong, S.Y., Liaw, C.Y., and Phoon, K.K. (1999) Singapore rainfall behavior: chaotic? J. Hydrol. Eng., ASCE, Vol. 4, No. 1, pp. 38-48. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:1(38)
  31. Sivakumar, B., Berndtsson, R., Persson, M., and Uvo, C.B. (2005) A multi-variable time series phase-space reconstruction approach to investigation of chaos in hydrological process, International Journal of Civil and Environmental Engineering, Vol. 1, No. 1, pp. 35-51.
  32. Sivakumar, B., Jayawardena, A.W., and Li, W.K. (2007) Hydrologic complexity and classification: a simple data reconstruction approach, Hydological Processes, Vol. 21, pp. 2713-2728. https://doi.org/10.1002/hyp.6362
  33. Takens, F. (1981) Detecting strange attractors in turbulence, In Dynamical Systems and Turbulence, Rand DA, Young LS (eds). Lecture Notes in Mathematics 898. Springer-Verlag: Berlin, Germany; pp. 366-381.
  34. Wilcox, B.P., Seyfried, M.S., and Matison, T.H. (1991) Searching for Chaotic Dynamics in Snow melt Runoff, Water resources Research. Vol. 27, No. 6, pp. 1005-1010. https://doi.org/10.1029/91WR00225