• Title/Summary/Keyword: Time Scales

Search Result 850, Processing Time 0.026 seconds

THE RELATION BETWEEN MCSHANE INTEGRAL AND MCSHANE DELTA INTEGRAL

  • Park, Jae Myung;Lee, Deok Ho;Yoon, Ju Han;Kim, Young Kuk;Lim, Jong Tae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.113-121
    • /
    • 2014
  • In this paper, we define an extension $f^*:[a,\;b]{\rightarrow}\mathbb{R}$ of a function $f:[a,\;b]_{\mathbb{T}}{\rightarrow}\mathbb{R}$ for a time scale $\mathbb{T}$ and show that f is McShane delta integrable on $[a,\;b]_{\mathbb{T}}$ if and only if $f^*$ is McShane integrable on [a, b].

Transient heat transfer in thin films (초박막에서의 비정상 열전달)

  • Bai, C.H.;Chung, M.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • For the analysis of phonon heat transfer within short time and spatial scales, conventional macroscopic heat conduction equations with jump boundary conditions are tried and the results are compared to those of equation of phonon radiative transport(EPRT), which is one of microscopic transport equation. In transient state the macroscopic temperatures show far different behavior from EPRT. In steady state the hyperbolic temperatures with temperature jump at the wall from time relaxation model agrees well with EPRT temperatures. Since EPRT is also an approximate form of microscopic transport equation and there are no experimental results to verify the proposed model in this study, we can not conclude whether the approaching method from this study is valid or not. To the authors' knowledge, there are no experimental results available which can be used to test the validity of these models. Such an experiment, while difficult to conduct, would be invaluable.

THE ORDERING OF MAGNETIC FIELDS IN THE COSMOS

  • BIERMANN PETER L.;KRONBER PHILIPP P.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.527-531
    • /
    • 2004
  • It is argued that the key task in understanding magnetic fields in the cosmos is to comprehend the origin of their order or coherence over large length scales in galaxies. Obtaining magnetic fields can be done in stars, whose lifetime is usually $10^{10}$ rotations, while galactic disks have approximately 20 to 50 rotations in their lifetime since the last major merger, which established the present day gaseous disk. Disorder in the galactic magnetic fields is injected on the disk time scale of about 30 million years, about a tenth of the rotation period, so after one half rotation already it should become completely disordered. Therefore whatever mechanism Nature is using, it must compete with such a short time scale, to keep order in its house. This is the focal quest.

Transient Buoyant Flows of a Stratified Fluid in a Vertical Channel

  • Park, Jun-Sang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.656-664
    • /
    • 2001
  • A theoretical analysis is performed to describe the qualitative behavior of transient buoyant flows in a vertical channel. Consideration is given to the case of a fluid with a pre-existing stratification. The fluid motion is generated by giving impulsive anti-symmetric step-changes in temperature at the vertical left ad right sidewalls. The qualitative character of the flow is shown to be classified in the Rayleigh number (Ra)-Prandtl number ($sigma$) diagram. The transitory approach to the steady state can be monotonic or oscillatory, depending on ($sigma$-1)$^2$$pi$$^4$ 4$sigma$$R_a$. The prominent characteristics of time-dependent flow are discussed for large $R_a$. The profiles of temperature and velocity in the transient phase are depicted, which disclose distinctive time scales of motion. The transient process is shown to be sensitive to the Prandtl number. The detailed evolutions of flow and temperature fields are illustrated for large $R_a$.

  • PDF

Benthic Organisms and Environmental Variability in Antarctica: Responses to Seasonal, Decadal and Long-term Change

  • Clarke, Andrew
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.433-440
    • /
    • 2001
  • Marine organisms in Antarctica live in an environment which exhibits variability in physical processes over a wide range of temporal scales, from seconds to millennia. This time scale tends to be correlated with the spatial scale over which a given process operates, though this relationship is influenced by biology. The way organisms respond to variability in the physical environment depends on the time-scale of that variability in relation to life-span. Short-term variations are perceived largely as noise and probably have little direct impact on ecology. Of much greater importance to organisms in Antarctica are seasonal and decadal variations. Although seasonality has long been recognised as a key feature of polar environments, the realization that decadal scale variability is important is relatively recent. Long-term change has always been a feature of polar environments and may be a key factor in the evolution of the communities we see today.

  • PDF

A study for assessing accuracy rates of pain rating Scales(KPRS & VAS) (국어통증 척도와 시각적 상사 척도의 정확도 연구)

  • 이은옥;정면숙
    • Journal of Korean Academy of Nursing
    • /
    • v.18 no.3
    • /
    • pp.239-244
    • /
    • 1988
  • The purpose of this study was to identify the accuracy rates(hit ratio) which mean the degree of concordance between pain rating scale differences over time & subjective comparisons. Subjective comparisons mean the responses to the question “how does the pain you are now experiencing compare with the one at the time of the assessment yesterday\ulcorner” Answers to this question were translated into ‘greater’, ‘same’, or ‘less’. KPRS(Korean Pain Rating Scale) was developed through 4 consecutive studies to assess pain extensively & accurately by Lee etc. VAS(Visual Analogue Scale) was reported as valid & veliable measure for the intensity of pain by many researchers. Thirty hospitalized patients with complaints of Headache were partispated in this study during the period from May 1 to July 31, 1987. In conclusion, the accuracy rates of KPRS and VAS were 60%, 67%, respectively.

  • PDF

OSCILLATION THEOREMS FOR SECOND-ORDER MIXED-TYPE NEUTRAL DYNAMIC EQUATIONS ON SOME TIME SCALES

  • Sun, Jing
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.15-26
    • /
    • 2012
  • Some oscillation results are presented for the second-order neutral dynamic equation of mixed type on a time scale unbounded above $$\(r(t)[x(t)+p_1(t)x(t-{\tau}_1)+p_2(t)x(t+{\tau}_2)]^{\Delta}\)^{\Delta}+q_1(t)x(t-{\tau}_3)+q_2(t)x(t+{\tau}_4)=0.$$ These criteria can be applied when $\mathbb{T}=\mathbb{R}$, $\mathbb{T}=h{\mathbb{Z}}$ and $\mathbb{T}=\mathbb{P}_{a,b}$. Two examples are also provided to illustrate the main results.

Long lived spiral structures in galaxies

  • Saha, Kanak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2017
  • Spiral structure in disk galaxies is modeled with ncollisionless N-body simulations including live disks, halos, and bulges with a range of masses. Two of these simulations make long-lasting and strong two-arm spiral wave modes that last for about 5 Gyr with constant pattern speed. These two had a light stellar disk and the largest values of the Toomre Q parameter in the inner region at the time the spirals formed, suggesting the presence of a Q-barrier to wave propagation resulting from the bulge. The relative bulge mass in these cases is about 10%. Models with weak two-arm spirals had pattern speeds that followed the radial dependence of the Inner Lindblad Resonance. In addition to these, we also report a few more cases where two-armed spirals are developed and are maintained for a several rotation time scales.

  • PDF

EVOLUTION OF ORBIT AND ROTATION OF A PSEUDO-SYNCHRONOUS BINARY SYSTEM ON THE MAIN SEQUENCE

  • Li, Lin-Sen
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • We study the pseudo-synchronous orbital motion of a binary system on the main sequence. The equations of the pseudo-synchronous orbit are derived up to $O(e^4)$ where e is the eccentricy of the orbit. We integrate the equations to present their solutions. The theoretical results are applied to the evolution of the orbit and spin of the binary star Y Cygni, which has a current eccentricity of $e_0\;=\;0.142$. We tabulate our numerical results for the evolution of the orbit and spin per century. The numerical results for the semi-major axes and rotational angular velocities in the evolutional time scales of three stages (synchronization, circularization, and collapse time scale) are also tabulated. Synchronization is achieved in about $5{\times}10^3\;years$ followed by circularization lasting about $1{\times}10^5\;years$ before decaying in $2{\times}10^5\;years$.

RICCATI TRANSFORMATION AND SUBLINEAR OSCILLATION FOR SECOND ORDER NEUTRAL DELAY DYNAMIC EQUATIONS

  • Tripathy, Arun Kumar
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.1005-1021
    • /
    • 2012
  • This work is concerned with oscillation of the second order sublinear neutral delay dynamic equations of the form $$\(r(t)\;\((y(t)+p(t)y(a(t)))^{\Delta}\)^{\gamma}\)^{\Delta}+q(t)y^{\gamma}({\beta}(t))=0$$ on a time scale $\mathcal{T}$ by means of Riccati transformation technique, under the assumptions $\int^{\infty}_{t_0}\(\frac{1}{r(t)}\)^{\frac{1}{\gamma}}$ ${\Delta}t={\infty}$ and $\int^{\infty}_{t_0}\(\frac{1}{r(t)}\)^{\frac{1}{\gamma}}$ ${\Delta}t$ < ${\infty}$, where 0 < ${\gamma}{\leq}1$ is a quotient of odd positive integers.