본 논문은 퍼지추론을 이용하여 신경회로망의 필기체 숫자 인식 개선 방법을 제안하였고 실험을 통하여 확인하였다. 신경회로망은 학습 시간이 오래 걸리고, 학습한 패턴에서는 100% 인식률을 보였다. 그러나 신경회로망은 시험 패턴에서는 좋은 결과를 보여주지 못했다. 실험결과 신경회로망의 인식률과 오인식률이 각각 초기 89.6%, 10.4%에서 90.2%, 9.8%로 각각 향상되었다. 특히, 숫자 3과 5에서 오인식률을 크게 감소시켰다. 실험에서 퍼지 소속 함수의 추출을 숫자의 밀도로 사용하였으나 필기체 숫자는 입력 패턴이 다양하기 때문에 다양한 특성을 추출하고 복합적으로 퍼지 추론을 사용해 더 나은 인식률을 높여야 한다. 또한 퍼지추론을 엄격하게 적용하기보다는 입력 패턴을 매칭 할 때 퍼지 추론을 적용하는 것을 제안한다.
This paper proposes an expert system with the knowledge learning capability which can enhance the safety and effectiveness of substation operation in the automated substation as well as existing substation by inferring multiple events such as main transformer fault, busbar fault and main transformer work schedule under multiple inference mode and multiple objective mode and by considering totally the switch status and the main transformer operating constraints. Especially inference mode includes the local minimum tree search method and pattern recognition method to enhance the performance of real-time bus reconfiguration strategy. The inference engine of the expert system consists of intuitive inferencing part and logical inferencing part. The intuitive inferencing part offers the control strategy corresponding to the event which is most similar to the real event by searching based on a minimum distance classification method of pattern recognition methods. On the other hand, logical inferencing part makes real-time control strategy using real-time mode(best-first search method) when the intuitive inferencing is failed. Also, it builds up a knowledge base or appends a new knowledge to the knowledge base using pattern learning function. The expert system has main transformer fault, main transformer maintenance work and bus fault processing function. It is implemented as computer language, Visual C++ which has a dynamic programming function for implementing of inference engine and a MFC function for implementing of MMI. Finally, it's accuracy and effectiveness is proved by several event simulation works for a typical substation.
본 논문에서는 지연시간을 갖는 비선형 시스템의 효율적 제어를 위해 퍼지-신경망에 기반한 지연시간 보상기를 제안하였다. 제안된 제어시스템은 ANFIS(Adaptive Neuro-Fuzzy Inference System)라고 불리는 두개의 퍼지-신경망으로 구성되며 이중 하나는 직-병렬 방식으로 동작하고 다른 하나는 병렬 방식으로 동작한다. 직-병렬 방식으로 동작하는 퍼지-신경망은 지연시간을 갖는 비선형 시스템의 응답을 추종하는 특성을 갖으며 병렬 방식으로 동작하는 퍼지-신경망은 지연시간을 보상하기 위한 시스템 출력을 예측하는 기능을 수행한다. 따라서 본 연구에서 제안된 시스템은 전형적인 Smith 예측기의 비선형 시스템에의 적용을 위한 확장이라고 생각할 수 있다. 본 논문에서는 제안된 지연시간 보상기의 상세한 설계과정을 보였으며 또한 제안된 제어기 설계 기법의 유용성 화인을 위해 비선형 수치데이터에 대한 컴퓨터 모의실험을 수행하였다.
현재 구축되어 있는 반도체 공정에서의 상태감시 시스템은 센서 데이터를 수동으로 수집하는 방식으로써 복합 장애 검출이나 실시간 감시에서 한계가 존재한다. 본 논문에서는 영역 온톨로지를 구성하여 시간에 따른 관계망을 형성하는 상황인지 알고리즘을 설계하고 이를 통해 반도체 공정에서 위험요소가 발견되는 부분에 대해서 이벤트를 생성하여 사용자에게 서비스하는 시스템을 제안하며, 이를 구현하기 위해 상황 추론을 위한 다중센서 노드를 설계하고 이를 실험하였다. 실험 결과, 다수의 수집된 데이터에서 시간에 대한 관계가 형성된 내용에 대해서는 시간적 규칙추론이 적용된 이벤트가 발생하였으며 오작동 및 외부의 시간적 요인에서 발생되는 이벤트는 Log로만 데이터를 제공하는 것을 확인할 수 있었다.
This paper describes a omni-directionally speaker tracking system for mobile robot interface in real environment. Its purpose is to detect a robust 360-degree sound source and to recognize voice command at a long distance(60-300cm). We consider spatial features, the relation of position and interaural time differences, and realize speaker tracking system using fuzzy inference process based on inference rules generated by its spatial features.
This paper describes a active audition system for robot-human interface in real environment. We propose a strategy for a robust sound localization and for -talking speech recognition(60-300cm) based on 2-dimensional microphone array. We consider spatial features, the relation of position and interaural time differences, and realize speaker tracking system using fuzzy inference profess based on inference rules generated by its spatial features.
International Journal of Computer Science & Network Security
/
제23권5호
/
pp.47-52
/
2023
In this paper a new fuzzy prediction is designed and developed to predict the type of delivery based on 7 factors. The developed system is highly needed to give a recommendation to the family excepting baby and at the same time provide an advisory system to the physician. The system has been developed using MATLAB and has been tested and verified using real data. The system shows high accuracy 95%. The results has been also checked one by one by a physician. The system shows perfect matching with the decision of the physician.
유비쿼터스 환경에서 모바일 단말기의 제한적인 자원 문제를 해결하기 위해 주변 자원을 실시간으로 공유하는 연구들이 진행되고 있다. 그리고 자원의 공유뿐만 아니라 상황 정보에 기반한 추론을 통해 개인 맞춤형 자원을 추천하는 연구도 활발히 진행되고 있다. 개인 맞춤형 자원 추천을 위하여 사용자의 기본 정보, 자원에 대한 선호도, 공유 대상이 되는 자원의 정보, 단말기의 위치, 시간과 같은 다양한 상황 정보는 효과적으로 공유 및 관리되어야 한다. 또한 신뢰성 있는 자원 추론을 위해 필요한 추론규칙을 검증하는 단계는 매우 중요하다. 이를 위해서 다양한 상황 정보를 구성하여 실제 단말기 상에서 자원 추론규칙이 올바르게 동작하는지 검증해야 하지만 이는 현실적으로 많은 비용과 시간이 필요하다. 따라서 본 논문애서는 이러한 문제점을 해결하기 위하석 추론 검증 도구를 제안한다. 제안하는 추론 검증도구는 편리한 그래픽 사용자 인터페이스를 제공하여 원하는 상황 정보를 쉽게 생성할 수 있고, 실제 단말기를 대신하여 동적인 상황 정보의 변경에 따른 추론을 정확하게 검증한다.
The resistance Spot Welding is widely used in the field of assembling the plates. However we don't still have any satisfactory solution, which is non-destructive quality evaluation in real-time or on-line, against it. Moreover, even though the rate of welding under the condition of expulsion has been high until now, quality control of welding against expulsion hasn't still been established. In this paper, it was proposed on the quality assurance technique of resistance spot welding pieces using Neuro-Fuzzy algorithm. Four parameters from electrode separation signal in the case of non-expulsion, and dynamic resistance patterns in the case of expulsion are selected as fuzzy input parameters. The parameters consist of Fuzzy Inference System are determined through Neuro-Learning algorithm. And then, fuzzy Inference System is constructed. It was confirmed that the fuzzy inference values of strength have within ${\pm}$4% error specimen in comparison with real strength for the total strength range, and the specimen percent having within ${\pm}$1% error was 88.8%. According to KS(Korean Industrial Standard), tensile-shear strength limit for electric coated of zinc is 400kgf/mm2. Judging to the quality of welding is good or bad, according to this criterion and the results of inference, the probability of misjudgement that good quality is valuated into poor one was 0.43%, on contrary it was 2.59%. Finally, the proposed Neuro-Fuzzy Inference System can infer the tensile-shear strength of resistance spot welding pieces with high performance for all cases-non-expulsion and expulsion. And On-Line Welding Quality Inspection System will be realized sooner or later.
In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.