• Title/Summary/Keyword: Time Increment Control

Search Result 130, Processing Time 0.03 seconds

Generalized optimal active control algorithm with weighting matrix configuration, stability and time-delay

  • Cheng, Franklin Y.;Tian, Peter
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.119-135
    • /
    • 1993
  • The paper presents a generalized optimal active control algorithm for earthquake-resistant structures. The study included the weighting matrix configuration, stability, and time-delays for achieving control effectiveness and optimum solution. The sensitivity of various time-delays in the optimal solution is investigated for which the stability regions are determined. A simplified method for reducing the influence of time-delay on dynamic response is proposed. Numerical examples illustrate that the proposed optimal control algorithm is advantageous over others currently in vogue. Its feedback control law is independent of the time increment, and its weighting matrix can be flexibly selected and adjusted at any time during the operation of the control system. The examples also show that the weighting matrix based on pole placement approach is superior to other weighting matrix configurations for its self-adjustable control effectiveness. Using the time-delay correction method can significantly reduce the influence of time-delays on both structural response and required control force.

Numerical Study About Flow Control Using Blending Gurney Flap with Jet Flap (Gurney플랩과 제트 플랩을 혼용한 유동제어 기법에 관한 수치적 연구)

  • Choi, Sung-Yoon;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.565-574
    • /
    • 2007
  • The flow control effect of blending Gurney flap with jet flap for flow around an NACA 0012 airfoil was numerically investigated through parameter variation of each flow control mechanism on unstructured meshes. The aerodynamic force and moment variations due to flow control were examined, and the results were compared between the blending control and each individual flow control. The results showed that the blending control required less energy input to achieve the same level of lift increment than that of the jet flap, and at the same time alleviated drag increment caused by introducing the Gurney flap.

MODIFIED POSTERIOR TIME-STEP ADJUSTMENT TECHNIQUE FOR MDOF SYSTEM IN SUBSTRUCTURING PSEUDODYNAMIC TEST (부분구조 유사동적법에 있어 다자유도 시스템에 대한 수정 시간증분 조정기법)

  • 이원호;강정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.473-480
    • /
    • 1998
  • The substructuring pseudodynamic test is a hybrid testing method consisting of a numerical simulation of the earthquake response of an analytical model and a loading test of a specimen. The substructuring pseudodynamic testing technique has been applied to various seismic experiments since it has advantages over the shaking table test to study dynamic behaviors of relatively large scale structures. However, experimental errors are inevitable in substructuring pseudodynamic testing. Some of these errors can be monitored during the test, but, due to limitations in control system, they cannot be eliminated. For example, one cannot control exactly the displacements that are actually imposed on the structures at each time step. This paper focuses on a technique to minimize the cumulative effect of such control errors for MDOF system. For this purpose, the modified posterior adjustment of the time increment from a target value $\Delta$t$_{n}$ to an adjusted value is performed to minimize the effect of the control errors for MDOF system.for MDOF system.

  • PDF

PID Control Method with Modified Integral Parameter (변형된 적분 파라미터를 가진 PID 제어방식)

  • 엄기환;강성호;이정훈
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.11-16
    • /
    • 2004
  • The integral term of PID controller have the advantage of reduced steady state error and the disadvantage of accumulated errors. We proposed a method that maintains its advantage and improvs the disadvantage in transient response. The proposed PID control method with modified integral parameter accumulates errors in increment section and ignores errors in decrement section. Therefore, the proposed PID control method decreases overshoot, and makes settling time faster than conventional PID control method.

Scale Factor Tuning of the Fuzzy Controller Using Continuous Fuzzy Input Variables (연속형 퍼지 입력변수를 사용하는 퍼지 제어기의 환산계수 동조)

  • Lim, Young-Cheol;Park, Jong-Gun;Wi, Seog-Oh;Jung, Hyun-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1359-1361
    • /
    • 1996
  • This paper describes a design of real time fuzzy controller using Minimum fuzzy control Rule Selection Method(MRSM). The control algorithm of dynamic systems needs less computation time and memory. To reduce the computation time of fuzzy logic controller, minimum number of rules are to be selected for the fuzzy input variable. The universe of discourse is divided by the number of linguistic labels to allocate the assigned membership function to the fuzzy input variables. In this case, since fuzzy input variables are continuous, scale factor SU is tuned independently. According to increment of SU control surface is improved to adapt the change of system parameter. At this, crisp control surface is increased. With the increament of crisp control surface, fuzzy control surface is reduced. When error state deviates from desirable error state, crisp control surface is more useful than fuzzy control surface for obtaining fast rising time.

  • PDF

Development of CAN based Automatic Fire Detection System

  • Lee, Hong-Hee;Kim, Jung-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.695-699
    • /
    • 2003
  • It is general to use the control network in control systems in order to reduce the complexity of the related wiring harnesses and to improve the system flexibility. CAN becomes one of the most popular network protocols because of its low price, multiple sources, high performance and reliability. This paper describes a CAN based real-time control of the fire detection system for the intelligent building system. The proposed fire detection and alarm system is stronger than the previous one against noises and communication media faults and can solve many problems such as complex cabling and increment of I/O ports by using many sensors. Furthermore, MMI can be achieved easily with the personal computer that is used for replacing the traditional monitoring system. The proposed system is implemented and the experimental results are given.

  • PDF

Generalization of Integration Methods for Complex Inelastic Constitutive Equations with State Variables (상태변수를 갖는 비탄성 구성식 적분법의 일반화)

  • Yun, Sam-Son;Lee, Sun-Bok;Kim, Jong-Beom;Lee, Hyeong-Yeon;Yu, Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1075-1083
    • /
    • 2000
  • The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. These equations consist of the definition of inelastic strain and the evolution of the state variables introduced to quantify the irreversible processes occurred in the material. With respect to the definition of the inelastic strain, the inelastic constitutive models can be categorized into elastoplastic model, unified viscoplastic model and separated viscoplastic model and the different integration methods have been applied to each category. In the present investigation, the generalized integration method applicable for various types of constitutive equations is developed and implemented into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using line-search technique in combination with Newton method. The strategy to control the time increment for the improvement of the accuracy of the numerical integration is proposed. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method. The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. These equations consist of the definition of inelastic strain and the evolution of the state variables introduced to quantify the irreversible processes occurred in the material. With respect to the definition of the inelastic strain, the inelastic constitutive models can be categorized into elastoplastic model, unified viscoplastic model and separated viscoplastic model and the different integration methods have been applied to each category. In the present investigation, the generalized integration method applicable for various types of constitutive equations is developed and implemented into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using line-search technique in combination with Newton method. The strategy to control the time increment for the improvement of the accuracy of the numerical integration is proposed. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.

Reduced variance implicit self-tuning a;gorithm with variable time-delays for robot manipulator (로보트 매니풀레이터의 시변 지연 시간을 고려한 분산 감소 임플리시트 자기동조 알고리즘)

  • 이희진;박민용;이상배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.12-15
    • /
    • 1988
  • A controller described in this paper is designed for implicit generalised minimum varience controller with variable time delays in which the weighting polynominals are calculated to reduce the output and control signals variances. This paper is based on the fact that the pole-assigment equation may have multiple solutions if the weighting polynominals are not of minimal order. It is shown that the larger order of the weighting polynominals increment the better is the stochastic behavior of the closed-loop system with variable time delays without changs in the deterministic behavior of the system. Based on this theory, the controller is applied to position control of a three-link manipulater with parameter uncertainty.

  • PDF

Sensitivity Analysis and Optimization of Design Variables Related to an Algorithm for Loss of Balance Detection (균형상살 검출 알고리즘에서 검출과 관련된 설계변수의 민감도 해석 몇 최적화)

  • Ko, B.K.;Kim, K.H.;Son, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • This study suggested an optimized algorithm for detecting the loss of balance(LOB) in the seated position. And the sensitivity analysis was performed in order to identify the role of each design variable in the algorithm. The LOB algorithm consisted of data processing of measured signals, an internal model of the central nervous system and a control error anomaly(CEA) detector. This study optimized design variables of a CEA detector to obtain improved values of the success rate(SR) of detecting the LOB and the margin time(MT) provided for preventing the falling. Nine healthy adult volunteers were involved in the experiments. All the subjects were asked to balance their body in a predescribed seated posture with the rear legs of a four-legged wooden chair. The ground reaction force from the right leg was measured from the force plate while the accelerations of the chair and the head were measured from a couple of piezoelectric accelerometers. The measured data were processed to predict the LOB using a detection algorithm. Variables S2, h2 and hd are related to the detector: S2 represents a data selecting window, h2 a time shift and hd an operating period of the LOB detection algorithm. S2 was varied from 0.1 to 10 sec with an increment of 0.1 sec, and both h2 and hd were varied from 0.01 to 1.0 sec with an increment of 0.01 sec. It was found that the SR and MT were increased by up to 9.7% and 0.497 sec comparing with the previously published case when the values of S2, h2 and hd were set to 4.5, 0.3 and 0.2 sec, respectively. Also the results of sensitivity analysis showed that S2 and h2 had considerable influence on the SR while these variables were not so sensitive to the MT.

Improvement of active nose control in vehicle interior using a RLS algorithm (RLS 알고리즘을 이용한 승용차 내 능동소음제어의 개선)

  • 김영욱;이윤희;김기두
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.106-113
    • /
    • 1997
  • While driving, the low frequency interior noise below 200Hz causes the main component that irritates the auditory acoustic sense. But these passive control methods bring out increment in cost and weight of the vehicle and result in low efficiency. Recently, various ANC(Active Noise Control) methos to suppress the low frequency noise began to launch into application. In this study, we implemented the active noise control system for passenger vehicle to cancel the engine booming noise using DSP-based control unit, 4 micorphones, and 2 speakers. We used MEFX-LMS (Multiple Error Filtered X-Least Mean Square) algorithm since it can be easily implemented in real time. Also, MEFX-RLS algorithm was taken to enhance the suppression of the harmonic components of the engine booming noise inspite of its computational complexity. The performance of two adaptive algorithms were analyzed with experimental resutls.

  • PDF