• 제목/요약/키워드: Time Delayed Neural Network

검색결과 28건 처리시간 0.023초

RTDNN과 FLC를 사용한 신경망제어기 설계 (Design of Neural Network Controller Using RTDNN and FLC)

  • 신위재
    • 융합신호처리학회논문지
    • /
    • 제13권4호
    • /
    • pp.233-237
    • /
    • 2012
  • 본 논문에서는 RTDNN과 FLC를 이용해서 주신경망을 보상하는 제어시스템을 제안한다. 주신경망이 학습을 완료한 후 외란이나 부하변동이 생겨 오브 슛 내지는 언더 슛을 나타낼 때 적절히 조정하기 위해 퍼지 보상기를 사용하여 원하는 결과를 얻을 수 있도록 하였다. 그리고 제어대상의 역모델 신경망에서 학습시킨 결과를 이용하여 주신경망의 가중치를 변경시킴으로서 제어대상의 원하는 동적 특성을 얻게 된다. 모의 실험 결과 제안한 신경망 제어기의 양호한 응답 특성을 확인 할 수 있다.

RNN-based integrated system for real-time sensor fault detection and fault-informed accident diagnosis in nuclear power plant accidents

  • Jeonghun Choi;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.814-826
    • /
    • 2023
  • Sensor faults in nuclear power plant instrumentation have the potential to spread negative effects from wrong signals that can cause an accident misdiagnosis by plant operators. To detect sensor faults and make accurate accident diagnoses, prior studies have developed a supervised learning-based sensor fault detection model and an accident diagnosis model with faulty sensor isolation. Even though the developed neural network models demonstrated satisfactory performance, their diagnosis performance should be reevaluated considering real-time connection. When operating in real-time, the diagnosis model is expected to indiscriminately accept fault data before receiving delayed fault information transferred from the previous fault detection model. The uncertainty of neural networks can also have a significant impact following the sensor fault features. In the present work, a pilot study was conducted to connect two models and observe actual outcomes from a real-time application with an integrated system. While the initial results showed an overall successful diagnosis, some issues were observed. To recover the diagnosis performance degradations, additive logics were applied to minimize the diagnosis failures that were not observed in the previous validations of the separate models. The results of a case study were then analyzed in terms of the real-time diagnosis outputs that plant operators would actually face in an emergency situation.

신경회로망을 이용한 전기로의 온도제어 (Temperature Control of Electric Furnace using Neural Network)

  • 류재상;최영규;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.238-240
    • /
    • 1993
  • In this paper, back-propagation neural network is used to implement a controller for electric furnace. Although the dynamics of furnace is nonlinear and time-delayed and depends on the environment, the time constant is relatively large so that manual control based on human expert can have good performance. The input-output data of the manual controller are collooted and used as training data for neurocontroller. From simulation. we find that the neurocontroller has better performances than the conventional controller.

  • PDF

시간지연 회귀 신경회로망을 이용한 피치 악센트 인식 (Automatic Recognition of Pitch Accents Using Time-Delay Recurrent Neural Network)

  • Kim, Sung-Suk;Kim, Chul;Lee, Wan-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제23권4E호
    • /
    • pp.112-119
    • /
    • 2004
  • This paper presents a method for the automatic recognition of pitch accents with no prior knowledge about the phonetic content of the signal (no knowledge of word or phoneme boundaries or of phoneme labels). The recognition algorithm used in this paper is a time-delay recurrent neural network (TDRNN). A TDRNN is a neural network classier with two different representations of dynamic context: delayed input nodes allow the representation of an explicit trajectory F0(t), while recurrent nodes provide long-term context information that can be used to normalize the input F0 trajectory. Performance of the TDRNN is compared to the performance of a MLP (multi-layer perceptron) and an HMM (Hidden Markov Model) on the same task. The TDRNN shows the correct recognition of $91.9{\%}\;of\;pitch\;events\;and\;91.0{\%}$ of pitch non-events, for an average accuracy of $91.5{\%}$ over both pitch events and non-events. The MLP with contextual input exhibits $85.8{\%},\;85.5{\%},\;and\;85.6{\%}$ recognition accuracy respectively, while the HMM shows the correct recognition of $36.8{\%}\;of\;pitch\;events\;and\;87.3{\%}$ of pitch non-events, for an average accuracy of $62.2{\%}$ over both pitch events and non-events. These results suggest that the TDRNN architecture is useful for the automatic recognition of pitch accents.

신용카드 고객의 신용 예측을 위한 지식기반 방법들: 적용 및 비교 연구 (Knowledge-Based methodologies for the Credit Rating : Application and Comparison)

  • 주석진;김재경;성태경;김중한
    • 지능정보연구
    • /
    • 제5권1호
    • /
    • pp.49-64
    • /
    • 1999
  • 본 연구는 백화점 고객이 신용 카드 신청 요구 시에 작성되는 가입 정보 및 사용되고 있는 고객의 거래 정보는 카드 사용 패턴으로 신용도를 예측하는 여러 방법론을 제시하고 성능을 비교하였다. 가입 정보를 분석하기 위해 역전파 신경망(Back-Propagation Neural Network, BPNN), 사례기반추론(Case-Based reasoning)을, 거래 정보를 분석하기 위해 역전파 신경망과 더불어 시간지연 신경망(Time-Delayed Neural Network, TDNN)을 각각 사용하여 그 결과를 비교하였다. 또한 전체시스템의 적중률을 높이기 위햐여, ID3와 신경망을 이용한 Meta-Leaning 방법을 제시하였으며, Meta-Learning 방법과 다른 방법들을 비교, 분석을 하였다. 본 연구에서는 모형 수립과 검증을 위하여 T백화점의 실제 신용 카드 가입 고객 데이터를 이용하여 실험하였다. 데이터의 성격에 따라 각 모델의 예측력에는 차이가 나타났으나, 신경망 모형의 예측력이 우수하였으며, 시간적 특성을 고려하는 시간지연 신경회로망 모형의 예측력은 더욱 우수하게 나타났다. 또한 Meta-Learning 모형을 사용하면 예측력이 더 높아진다는 것을 확인할 수 있었다.

  • PDF

항만물동량 예측력 제고를 위한 ARIMA 및 인공신경망모형들의 비교 연구 (A Study on Application of ARIMA and Neural Networks for Time Series Forecasting of Port Traffic)

  • 신창훈;정수현
    • 한국항해항만학회지
    • /
    • 제35권1호
    • /
    • pp.83-91
    • /
    • 2011
  • 예측의 정확성은 비용의 감소나 고객서비스의 제고를 위해 필수적으로 선행되어야 하기에 현재까지도 많은 연구자들에 의해 연구되고 있는 분야이다. 본 연구에서는 국내 항만의 컨테이너 물동량 예측에 있어 대표적인 비선형예측모형인 인공신경망모형과 ARIMA모형에 대한 비교연구를 수행하는데 목적을 두었고, 컨테이너 물동량 예측력 제고를 위해 ARIMA모형과 인공신경망(ANN)모형을 결합한 하이브리드모형을 사용해 다른 모형들과 예측성과를 비교하고자 한다. 특히 인공신경망모형의 네트워크 구조 설계에 부분에 있어 방대하며 복잡한 탐색공간에서도 전역해 찾기에 효과적인 기법으로 알려져 있는 유전알고리즘을 사용함과 동시에 인공신경망의 대표적인 모형으로 알려진 다층 퍼셉트론(MLP)뿐만 아니라 시간지연네트워크(TDNN)를 사용해 예측성과를 비교하였다. 그 결과 ANN모형과 하이브리드모형이 ARIMA모형보다 더 뛰어난 예측성과를 보이는 것으로 나왔다.

MSVQ/TDRNN을 이용한 음성인식 (Speech Recognition Using MSVQ/TDRNN)

  • 김성석
    • 한국음향학회지
    • /
    • 제33권4호
    • /
    • pp.268-272
    • /
    • 2014
  • 본 논문에서는 MSVQ(Multi-Section Vector Quantization)와 시간지연 회귀 신경회로망(TDRNN)을 이용한 하이브리드 구조의 음성인식 방법을 제안한다. MSVQ는 음성의 길이를 일정한 구간 수로 정규화한 코드북을 생성하고, 시간지연 회귀 신경회로망은 이 코드북을 이용하여 음성을 인식한다. 시간지연 회귀 신경회로망은 음성의 시계열 문맥정보를 잘 학습할 수 있는 구조로 구성되었다. 음성특징으로 인지선형예측(PLP) 계수가 사용되었다. 음성인식 실험을 수행한 결과 MSVQ/TDRNN 음성인식기는 97.9 %의 화자독립 음성 인식률을 보였다.

퍼지필터와 ART2를 이용한 선박용 용접기술개발 (A Studying on Gap Sensing using Fuzzy Filter and ART2)

  • 김관형;이재현;이상배
    • 한국항만학회지
    • /
    • 제14권3호
    • /
    • pp.321-329
    • /
    • 2000
  • Welding is essential for the manufacture of a range of engineering components which may vary from very large structures such as ships and bridges to very complex structures such as aircraft engines, or miniature components for microelectronic applications. Especially, a domestic situation of the welding automation is still depend on the arc sensing system in comparison to the vision sensing system. Specially, the gap-detecting of workpiece using conventional arc sensor is proposed in this study. As a same principle, a welding current varies with the size of a welding gap. This study introduce to the fuzzy membership filter to cancel a high frequency noise of welding current, and ART2 which has the competitive learning network classifies the signal patterns the filtered welding signal. A welding current possesses a specific pattern according to the existence or the size of a welding gap. These specific patterns result in different classification in comparison with an occasion for no welding gap. The patterns in each case of 1mm, 2mm, 3mm and no welding gap are identified by the artificial neural network.

  • PDF

지연시간을 갖는 다변수 유량제어 시스템의 2-자유도 PID 제어기 특성 비교 (The comparison of the output characteristics of 2-DOF PID controller in the multivariable flow control system with delayed time)

  • 김동화
    • 제어로봇시스템학회논문지
    • /
    • 제5권6호
    • /
    • pp.744-752
    • /
    • 1999
  • In this paper, we studied the response characteristics of $\alpha$, $\beta$ separated type, combined type, PI typed, and feedforward type in 2DOF-PID controller through the simulation and the experiments designed with the multivariable flow control system. The parameters $\alpha$ and $\beta$ give an affect to characteristics of controller in separated type but $\gamma$ does not give an affect to the characteristics of 2-DOF PID. The more $\beta$ increases, the more overshoot decreases and especially, in case of PI type represent clearly. The $\alpha$, $\beta$ separated type has a very small overshoot and its magnitudes in 2-DOF PID onctroller increases in order of $\alpha$, $\beta$ combined type, PI type, feedforward type, conventional type. The response characteristics of simulation are similar to that of experiments but the experimental characteristics in the multivariable flow control system has the delayed response. The time delay of response in experiments depends on 2-DOF parameter $\alpha$, $\beta$, $\gamma$ and the overshoot increase as the $\alpha$, $\beta$, $\gamma$ increase. So, we can have a satisfactory response by tuning D gain.

  • PDF

ABR Traffic Control Using Feedback Information and Algorithm

  • Lee, Kwang-Ok;Son, Young-Su;Kim, Hyeon-ju;Bae, Sang-Hyun
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.236-242
    • /
    • 2003
  • ATM ABR service controls network traffic using feedback information on the network congestion situation in order to guarantee the demanded service qualities and the available cell rates. In this paper we apply the control method using queue length prediction to the formation of feedback information for more efficient ABR traffic control. If backward node receive the longer delayed feedback information on the impending congestion, the switch can be already congested from the uncontrolled arriving traffic and the fluctuation of queue length can be inefficiently high in the continuing time intervals. The feedback control method proposed in this paper predicts the queue length in the switch using the slope of queue length prediction function and queue length changes in time-series. The predicted congestion information is backward to the node. NLMS and neural network are used as the predictive control functions, and they are compared from performance on the queue length prediction. Simulation results show the efficiency of the proposed method compared to the feedback control method without the prediction. Therefore, we conclude that the efficient congestion and stability of the queue length controls are possible using the prediction scheme that can resolve the problems caused from the longer delays of the feedback information.

  • PDF