• Title/Summary/Keyword: Time Alignment

Search Result 708, Processing Time 0.03 seconds

Rapid Initial Alignment Method of Inertial Navigation System Using Adaptive Time Delay Compensation (적응형 시간지연 보상을 통한 관성항법장치 급속초기정렬기법)

  • Lee, Hyung-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.433-439
    • /
    • 2018
  • In this paper, a SDINS(strapdown inertial navigation system) rapid initial alignment technique with adaptive time delay compensation is proposed. The proposed method consists of two steps. In first step, misalignment and data latency are estimated by conducting pre-transfer alignment. Then, hybrid alignment is designed to rapidly find the misalignment changes induced by pyro-shock. To improve the performance of hybrid alignment, adaptive time delay compensation method is suggested. We verify the performance improvement of the proposed alignment scheme comparing with the conventional transfer alignment method by van test. The test result shows that the proposed alignment technique improves alignment performance.

An Automatic Visual Alignment System for an Exposure System (노광시스템을 위한 자동 정렬 비젼시스템)

  • Cho, Tai-Hoon;Seo, Jae-Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.43-48
    • /
    • 2007
  • For exposure systems, very accurate alignment between the mask and the substrate is indispensable. In this paper, an automatic alignment system using machine vision for exposure systems is described. Machine vision algorithms are described in detail including extraction of an alignment mark's center position and camera calibration. Methods for extracting parameters for alignment are also presented with some compensation techniques to reduce alignment time. Our alignment system was implemented with a vision system and motion control stages. The performance of the alignment system has been extensively tested with satisfactory results. The performance evaluation shows alignment accuracy of lum within total alignment time of about $2{\sim}3$ seconds including stage moving time.

  • PDF

QP-DTW: Upgrading Dynamic Time Warping to Handle Quasi Periodic Time Series Alignment

  • Boulnemour, Imen;Boucheham, Bachir
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.851-876
    • /
    • 2018
  • Dynamic time warping (DTW) is the main algorithms for time series alignment. However, it is unsuitable for quasi-periodic time series. In the current situation, except the recently published the shape exchange algorithm (SEA) method and its derivatives, no other technique is able to handle alignment of this type of very complex time series. In this work, we propose a novel algorithm that combines the advantages of the SEA and the DTW methods. Our main contribution consists in the elevation of the DTW power of alignment from the lowest level (Class A, non-periodic time series) to the highest level (Class C, multiple-periods time series containing different number of periods each), according to the recent classification of time series alignment methods proposed by Boucheham (Int J Mach Learn Cybern, vol. 4, no. 5, pp. 537-550, 2013). The new method (quasi-periodic dynamic time warping [QP-DTW]) was compared to both SEA and DTW methods on electrocardiogram (ECG) time series, selected from the Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH) public database and from the PTB Diagnostic ECG Database. Results show that the proposed algorithm is more effective than DTW and SEA in terms of alignment accuracy on both qualitative and quantitative levels. Therefore, QP-DTW would potentially be more suitable for many applications related to time series (e.g., data mining, pattern recognition, search/retrieval, motif discovery, classification, etc.).

Development of the Real-time Initial Alignment Algorithm using the Kalman Filter

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.61.2-61
    • /
    • 2001
  • The purpose of the initial alignment of a SDINS is to get a coordinate transformation matrix from the body frame to the navigation frame. The initial alignment is one of the most important processes in the navigation system since its error has a large influence on the navigation solution. In this paper, a real-time initial alignment algorithm for the SDINS is developed using the Kalman filter. The steady state error analysis is performed for the developed Kalman filter technique and the gyrocompass loop method. The performance of the developed alignment method is compared with the gyrocompass loop method through the real-time alignment experiments.

  • PDF

Development of the Precise Multi-Position Alignment Method using a Pitch Motion (피치운동을 이용한 정밀 다위치 정렬기법 개발)

  • Lee, Jung-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.708-715
    • /
    • 2010
  • In Strapdown Inertial Navigation System, alignment accuracy is the most important factor to determine the performance of navigation. However by an existing self-alignment method, it takes a long time to acquire the alignment accuracy that we want. So, to attain the desired alignment accuracy in as little as $\bigcirc$ minutes, we have developed the precise multi-position alignment method. In this paper, it is proposed a inertial measurement matching transfer alignment method among alignment methods to minimize the alignment error in a short time. It is based on a mixed velocity-DCM matching method be suitable to the operating environment of vertical launching system. The compensation methods to reduce misalign error, especially azimuth angle error incurred by measurement time-delay error and body flexure error are analyzed and evaluated with simulation. This simulation results are finally confirmed by experimentations using FMS(Flight Motion Simulator) in Lab and the integration test to follow the fire control mission.

Correlationship among Smartphone Screen Time, Cervical Alignment, and Muscle Function in University Students

  • Hyungyu Cha;Seonyoung Hwang;Jinyoung Eo;Hyein Ji;Jiwon Han;Wonjae Choi
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.446-453
    • /
    • 2022
  • Objective: The popularization of smartphones can lead to abnormal cervical alignment in university students. The aim of this study was to investigate the relationship among smartphone screen time, cervical alignment, and muscle function in university students. Design: Cross-sectional study. Methods: Seventy-five university students participated in the study. They completed the evaluation of cervical alignment and muscle function, such as handgrip strength, proprioception, and muscle quality (tone, stiffness, and relaxation time). All participants recorded their general characteristics and individual smartphone screen time before the evaluation. They were evaluated craniovertebral angle (CVA) using smartphone application (angle meter 360) for measuring cervical alignment. The muscle function was assessed using a digital hand-held dynamometer, dual inclinometer, and MyotonPRO device. Results: Of all participants, twenty-five university students had forward head posture (CVA<49°, 33.33%). Independent t-test revealed that there were significant differences on smartphone screen time, muscle stiffness, and muscle relaxation between the participants with and without forward head posture (p<0.05). There were significant correlations between the smartphone screen time and the CVA, muscle tone, and muscle relaxation (r=-0.493, 0.250, and -0.500, respectively). Conclusions: The results indicate that the university students with forward head posture had high smartphone screen time and muscle stiffness compared to the students without forward head posture, and smartphone screen time might be associated with cervical alignment and muscle quality.

Measurement Time-Delay Error Compensation for Transfer Alignment (전달정렬의 측정치 시간지연 오차보상 기법)

  • Lim, You-Chol;Song, Gi-Won;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

A Study on the Optical Element Alignment Automation using Multi-Axis Ultra Precision Stage (극초정밀 다축 스테이지를 이용한 광소자 정렬 자동화에 관한 연구)

  • Jeong, Sang-Hwa;Kim, Gwang-Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.64-70
    • /
    • 2006
  • The optical element was usually used in optical devices and optical transfer devices, but it has been recently used in communication, computer and medical equipment. With the development of very high speed optical-communication, the development of the kernel parts of optical communication has also increased. Presently, the alignment of the optical element is time consuming, and an effective alignment algorithm has not yet to be developed. In this paper, the alignment automation of the optical element is studied. The ultra precision stage is applied to an optical element alignment to improve the accuracy of the alignment. The automation program of the optical element alignment is developed by LabVIEW programming to save the alignment time. The alignment algorithms of the optical element consist of field search and peak search algorithms.

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Development of Vertical Alignment System for Manufacturing AMOLED TV

  • Lee, Yoon-Seok;Han, Seok-Yoon;Lee, Nam-Hoon;Choi, Jeong-Og
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1393-1398
    • /
    • 2009
  • We once have announced that we developed a horizontal large-area alignment system with an alignment accuracy of < ${\pm}3{\mu}m$ and an alignment time of < 30 seconds, a core process module for RGB direct pattering by using a fine metal mask, which can process a Gen 4 ($730{\times}920mm^2$) substrate for high resolution OLED products. In this article, we presents a brand-new vertical alignment system for a even larger substrate of Gen 5 and beyond which can provide a better alignment accuracy and a higher throughput. The newly developed system exhibits an alignment accuracy of < ${\pm}2{\mu}m$ and an alignment time of < 20 seconds which, we believe, can open a new era for manufacturing large-size OLED monitors and TVs.

  • PDF