• Title/Summary/Keyword: Tiltrotor

Search Result 30, Processing Time 0.027 seconds

Tiltrotor Attitude Control Using L1 Adaptive Controller (L1 적응제어기법을 이용한 틸트로터기의 자세제어)

  • Kim, Nak-Wan;Kim, Byoung-Soo;Yoo, Chang-Sun;Kang, Young-Sin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1226-1231
    • /
    • 2008
  • A design of attitude controller for a tiltrotor is presented augmenting L1 adaptive control, neural networks, and feedback linearization. The neural networks compensate for the modeling error caused by the lack of knowledge of tiltrotor dynamics while the L1 adaptive control allows high adaptation gains in adaptation laws thereby, satisfying tracking performance requirement. The efficacy of this control methodology is illustrated in high-fidelity nonlinear simulation of a tiltrotor by flying the tiltrotor in different flight modes from where the L1 adaptive controller with neural networks is originally designed for.

Tiltrotor Aircraft SCAS Design Using Neural Networks (신경회로망을 이용한 틸트로터 항공기 SCAS 설계)

  • Han, Kwang-Ho;Kim, Boo-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • This paper presents the design and evaluation of a tiltrotor attitude controller. The implemented response type of the command augumentation system is Attitude Command Attitude Hold. The controller architecture can alleviate the need for extensive gain scheduling and thus has the potential to reduce development time. The control algorithm is constructed using the feedback linearization technique. And an on-line adaptive architecture that employs a neural network compensating the model inversion error caused by the deficiency of full knowledge tiltrotor aircraft dynamics is applied to augment the attitude control system. The use of Lyapunov stability analysis guarantees boundedness of the tracking error and network parameters. The performance of the controller is evaluated against ADS-33E criteria, using the nonlinear tiltrotor simulation code for Bell TR301 developed by KARI. (Korea Aerospace Research Institute)

Increasing Endurance Performance of Tiltrotor UAV Using Extended Wing (확장날개를 이용한 틸트로터 무인기 체공성능 향상)

  • Lee, Myeong Kyu;Lee, Chi-Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.111-117
    • /
    • 2016
  • A new configuration of tiltrotor UAV previously suggested by Korea Aerospace Research Institute (KARI) for the purpose of increasing the endurance performance in airplane mode flight has extended wings attached to the nacelle and rotated with the nacelle according to the flight modes. In this research, the effectiveness of the extended wing on the enhancement of the endurance performance of KARI tiltrotor UAV (TR60) was analytically investigated based on CFD analysis results. Flight tests and ground tests of measuring the fuel consumption were also conducted to directly compare the endurance performance for the two configurations of TR60 baseline and TR60 extended-wing model.

Neural Networks Based Adaptive Flight Controller Design and Handling Quality Evaluation for Tiltrotor Aircraft (신경회로망을 이용한 틸트로터 항공기의 적응 비행제어기 설계 및 비행성 평가)

  • Lee, Ki Young;Kim, Byoung Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • An application of adaptive flight controller is required for the non-linear and high uncertain system that configuration of tiltrotor aircraft is dramatically changed from rotary wing mode to fixed wing mode. In this paper, the applicable adaptive controller for the tiltrotor aircraft was designed using Neural Networks and DMI (Dynamic Model Inversion). The performance of the SCAS (Stability and Control Augmentation System) was simulated against manned military specification, using the fullscale model of 'Smart UAV(Unmanned Aerial Vehicle)' developed by Korea Aerospace Research Institute. And Neural Networks based adaptive controller was verified through its whole operating envelope using the established HQ (Handling Quality) criteria.

Development of Avionics System for the 200 kg-class Tiltrotor UAV (200 kg급 틸트로터 무인기의 항공전자시스템 개발)

  • Chang, Sungho;Cho, Am;Park, Bumjin;Choi, Seongwook
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.65-69
    • /
    • 2013
  • Avionics system designed for the 200 kg-class tiltrotor UAV has been developed. Avionics system for the UAV is the reconstruct system and can be programmed automation controller. This paper focuses on the design aspects of the hardware and presents the ground and flight test results. The hardware aspects of the avionics system include details about the hardware configurations for the interfaces with the Digital Flight Control Computer, sensors and Line-replaceable unit modifications.

Synthetic Overview on the Dispute about Tiltrotor Technology and Flight Safety (틸트로터 비행체 개념에 대한 기술적 논란 및 비행안전성 논란 분석)

  • Ahn, Oh-Sung;Kim, Jai-Moo
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.254-262
    • /
    • 2008
  • Several decades have passed since tiltrotor technology became a hot issue of debates between aircraft majors, policy maker and mass-media. Although most of those subjects have been officially probed or answered in objective way, biased articles or argues related with the adequacy of this technology still prevail in the way of tilt-rotor development programs, which are totally irrelevant and out-dated. This paper aims to help understanding on those issues in technically balanced manner and the cases of flight test mishaps.

  • PDF

Quad Tiltrotor

  • Korea Aerospace Industries Association
    • Aerospace Industry
    • /
    • s.92
    • /
    • pp.42-43
    • /
    • 2006
  • PDF

Trouble Shooting for Fully Automatic Flight Test of Small Scaled Tiltrotor UAV (축소형 틸트로터 무인기의 전자동 비행시험을 위한 문제해결과정)

  • Kang, Young-Shin;Park, Bum-Jin;Yoo, Chang-Sun;Koo, Sam-Ok;Lee, Jang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The ground integration test of Smart UAV has been performed according to the flight test plan. The flight test of full scaled model will be performed followed by 4 DOF ground rig test and a tethered hover test. Smart UAV is the first indigenous tiltrotor aircraft which can fly with fast cruise speed and take off or land vertically. In order to prove the flight control law of Smart UAV, the 40% scaled airplane was developed and have been tested. During flight test of small scaled model, many unique and unexpected problems occurred. After clearing these problems, fully automatic flight test was performed successfully. The experiences about many trouble shooting and resolving the problems would be basic material to avoid the unexpected but similar flight test problems hidden behind of the full scaled Smart UAV. This paper presents the detailed procedures of trouble shootings to solve the unique problems which occurred during the flight test of small scaled tiltrotor UAV.

  • PDF

Vibration Control of Composite Wing-Rotor System of Tiltrotor Aircraft (틸트로터 항공기 복합재료 날개의 진동 제어)

  • Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.509-516
    • /
    • 2007
  • Mathematical modeling and vibration control of a tiltrotor aircraft composite wing-rotor system are investigated in this study. A wing-mounted rotor can be tilted from the vertical position to a horizontal one, and vice versa. Effect of vibration control of the wing-rotor system via piezoelectricity is studied as a function of tilt angle, ply angle of composite wing and rotor's spin speed. Composite wing is modeled as a thin-walled box beam having a circumferentially uniform stiffness configuration that produces elastic coupling between flap-lag and between extension-twist behavior. Numerical simulations are provided and pertinent conclusions are outlined.

Simulation Study on Formation Flight of Tiltrotor UAVs (틸트로터 무인기 편대비행 시뮬레이션 연구)

  • Park, Bum-Jin;Kang, Young-Shin;Cho, Am;Yoo, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1012-1020
    • /
    • 2018
  • In order to improve the capability of mission flight of tiltrotor UAV that has been developed by Korea Aerospace Research Institute, a simulation study on the formation flight of autonomous control 5 level has been performed. The formation flight is based on the centralized method with leader and follower airplanes. The formation flight controller was verified through numerical simulation with 3 followers and hardware-in-the loop simulation with 1 follower. This paper describes controller design methods, hardware-in-the-looped simulation test, and performance verification using simulation.